People

Professor Kevin Tansey

Professor of Remote Sensing

School/Department: Geography, Geology & The Environment, School of

Telephone: +44 (0)116 252 3859

Email: kjt7@leicester.ac.uk

Profile

I am Professor of Remote Sensing at the University of Leicester. I am based at Space Park Leicester.

Research

My research interests are in the analysis and investigation of Earth Observation data. I am particularly interested in the characterising vegetation on the Earth's surface and identifying the spatial temporal and magnitude of disturbance (specifically fire deforestation degradation and drainage) of vegetation. I undertake these tasks at a range of spatial scales using existing and new SAR LiDAR and optical remotely sensed data from the ground aircraft or satellites in space. More recently I have become interested in the use of satellite data to identify agricultural activity and determine crop yield. I have published more than 70 journal papers in a career spanning over 25 years since commencing my PhD in 1995. I have successfully supervised 24 PhD students and currently supervise a further two research students. I have been involved in a number of projects that support these research interests.

Publications

(0)

  1. Areal, F.J., Yu, W., Tansey, K., and Liu, J. 2022, Measuring sustainable intensification using satellite remote sensing data. Sustainability, 14, 1832, https://doi.org/10.3390/su14031832
  2. Zhang, J., Tian, H., Wang, P., Tansey, K., Zhang, S., and Li, H., 2022, Improving wheat yield estimates using data augmentation models and remotely sensed biophysical indices within deep neural networks in the Guanzhong Plain, PR China. Computers and Electronics in Agriculture, 192, 106616, https://doi.org/10.1016/j.compag.2021.106616
  3. Han, D., Wang, P., Tansey, K., Zhang, S., Tian, H., Zhang, Y., and Li, H., 2021, Improving wheat yield estimates by integrating a remotely sensed drought monitoring index into the simple algorithm for yield estimate model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10383-10394, https://doi.org/10.1109/JSTARS.2021.3119398
  4. Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., Li, H., 2021, An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agricultural and Forest Meteorology, 310, 108629, https://doi.org/10.1016/j.agrformet.2021.108629
  5. Tian, H., Wang, P., Tansey, K., Han, D., Zhang, J., Zhang, S., and Li, H., 2021, A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. International Journal of Applied Earth Observation and Geoinformation, 102, 102375, https://doi.org/10.1016/j.jag.2021.102375
  6. Ibrahim, S., Kaduk, J., Tansey, K., Balzter, H., and Lawal, U.M., 2021, Detecting phenological changes in plant functional types over West African savannah dominated landscape. International Journal of Remote Sensing, 42, 567-594, https://doi.org/10.1080/01431161.2020.181191
  7. Han, D., Wang, P., Tansey, K., Zhou, X., Zhang, S., Tian, H., Zhang, J., and Li, H., 2020, Linking an agro-meteorological model and a water cloud model for estimating soil water content over wheat fields. Computers and Electronics in Agriculture, 179, 105833, https://doi.org/10.1016/j.compag.2020.105833
  8. da Conceição Bispo, P., Rodríguez-Veiga, P., Zimbres, B., do Couto de Miranda, S., Giusti Cezare, C.H., Fleming, S., Baldacchino, F., Louis, V., Rains, D., Garcia, M., Espírito-Santo, F.D.B., Roitman, I., Pacheco-Pascagaza, A.M., Gou, Y., Roberts, J., Barrett, K., Ferreira, L.G., Shimbo, J.Z., Alencar, A., Bustamante, M., Woodhouse, I.,  Sano, E.E., Ometto, J.P., Tansey, K., and Balzter, H., 2020, Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach. Remote Sensing, 12, 2685, https://doi.org/10.3390/rs12172685
  9. Zhou, X., Wang, P., Tansey, K., Zhang, S., Li, H., Tian, H., 2020, Reconstruction of time series leaf area index for improving wheat yield estimates at field scales by fusion of Sentinel-2, -3 and MODIS imagery. Computers and Electronics in Agriculture, 177, 105692, https://doi.org/10.1016/j.compag.2020.105692
  10. Rasul, A., Ibrahim, G.R.F., Hameed, H.M., and Tansey, K., 2020, A trend of increasing burned areas in Iraq from 2001 to 2019. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00842-7
  11. Nie, J., Ren, H., Zheng, Y., Ghent, D., and Tansey, K., 2020, Land surface temperature and emissivity retrieval from nighttime middle-infrared and thermal-infrared Sentinel-3 images. IEEE Geoscience and Remote Sensing Letters, 18, 5, 915-920. https://doi.org/10.1109/LGRS.2020.2986326
  12. Carreiras, J.M.B, Quegan, S., Tansey, K., and Page, S., 2020, Sentinel-1 observation frequency significantly increases burnt area detectability in tropical SE Asia. Environmental Research Letters, 15, 054008. https://doi.org/10.1088/1748-9326/ab7765
  13. Tanase, M.A., Belenguer-Plomer, M.A., Roteta, E., Bastarrika, A., Wheeler, J., Fernández-Carrillo, Á., Tansey, K., Wiedemann, W., Navratil, P., Lohberger, S., Siegert, F., and Chuvieco, E., 2020, Burned area detection and mapping: Intercomparison of Sentinel-1 and Sentinel-2 based algorithms over tropical Africa. Remote Sensing, 12, 334. https://doi.org/10.3390/rs12020334
  14. Tian, H., Wang, P., Tansey, K., Zhang, S., Zhang, J., and Li, H., 2020, An IPSO-BP neural network for estimating wheat yield using two remotely sensed variables in the Guanzhong Plain, PR China. Computers and Electronics in Agriculture, 169, 105180. https://doi.org/10.1016/j.compag.2019.105180
  15. Zhou, X., Wang, P., Tansey, K., Zhang, S., Li, H., and Wang, L., 2020, Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Computers and Electronics in Agriculture, 168, 105144. https://doi.org/10.1016/j.compag.2019.105144
  16. Zhou, X., Wang, P., Tansey, K., Ghent, D., Zhang, S., Li, H., and Wang, L., 2019, Drought monitoring using the Sentinel-3-based multiyear vegetation temperature condition index in the Guanzhong Plain, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 129-142. https://doi.org/10.1109/JSTARS.2019.2953955
  17. Hu, X., Ren, H., Tansey, K., Zheng, Y., Ghent, D., Liu, X., and Yan, L., 2019, Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agricultural and Forest Meteorology, 279, 107707. https://doi.org/10.1016/j.agrformet.2019.107707
  18. Da Conceição Bispo, P., Pardini, M., Papathanassiou, K., Kugler, F., Balzter, H., Rains, D., dos Santos, J.R., Rizaev, I., Tansey, K., dos Santos, M.N., and Spinelli Araujoi, L., 2019, Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry. Remote Sensing of Environment, 232, 111194. https://doi.org/10.1016/j.rse.2019.05.013
  19. Ibrahim, S., Balzter, H., Tansey, K., Mathieu, R., and Tsutsumida, N., 2019, Impact of soil reflectance variation correction on woody cover estimation in Kruger National Park using MODIS data. Remote Sensing, 11, 898. https://doi.org/10.3390/rs11080898
  20. Sun, Y., Wang, Q., Tansey, K., Ullah, S., Liu, F., Zhao, H., and Yan, L., 2019, Multi-constrained optimization method of line segment extraction based on multi-scale image space. ISPRS International Journal of Geo-Information, 8, 183. https://doi.org/10.3390/ijgi8040183
  21. Zheng, Y., Ren, H., Guo, J., Ghent, D., Tansey, K., Hu, X., Nie, J., and Chen, S., 2019, Land surface temperature retrieval from Sentinel-3A Sea and Land Surface Temperature Radiometer, using a split-window algorithm. Remote Sensing, 11, 650. https://doi.org/10.3390/rs11060650
  22. Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H.J., Fransson, J.E.S., Hoscilo, A., Ziółkowski, D., Stereńczak, K., Lohberger, S., Stängel, M., Berninger, A., Siegert, F., Avitabile, V., Herold, M., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Santoro., M., Cartus, O., Rauste, Y., Mathieu, R., Asner, G.P., Thiel, C., Pathe, C, Schmullius, C., Seifert, F.M., Tansey, K., and Balzter, H., 2019, Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53-68. https://doi.org/10.1016/j.jag.2018.12.008
  23. Chuvieco, E., Lizundia-Loiola, J., Lucrecia Pettinari, M., Ramo, R., Padilla, M.,Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., and Plummer, S., 2018, Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies. Earth Syst. Sci. Data, 10, 2015–2031. https://doi.org/10.5194/essd-10-2015-2018
  24. Yan, Y., Yang, P., Yan, L., Wan, J., Sun, Y.,Tansey, K., Asundi, A.K., Zhao, H., 2018, Automatic checkerboard detection for camera calibration using self-correlation. Journal of Electronic Imaging, 27, 033014. https://doi.org/10.1117/1.JEI.27.3.033014
  25. Adamu, B.,Tansey, K., and Ogutu, B., 2018, Remote sensing for detection and monitoring of vegetation affected by oil spills. International Journal of Remote Sensing, 39, 3628-3645. https://doi.org/10.1080/01431161.2018.1448483
  26. Ibrahim, S., Balzter, H.,Tansey, K., Tsutsumida, N., and Mathieu, R., 2018, Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data. International Journal of Remote Sensing, 39, 2718-2745. https://doi.org/10.1080/01431161.2018.1430914
  27. Ningthoujam, R.K., Balzter, H.,Tansey, K., Feldpausch, T.R., Mitchard, E.T.A., Wani, A.A., and Joshi, P.K., 2017, Relationships of S-band radar backscatter and forest aboveground biomass in different forest types. Remote Sensing, 9, 1116. https://doi.org/10.3390/rs9111116
  28. Padilla, M., Olofsson, P., Stehman, S.V.,Tansey, K., and Chuvieco, E., 2017, Stratification and sample allocation for reference burned area data. Remote Sensing of Environment, 203, 240-255. https://doi.org/10.1016/j.rse.2017.06.041
  29. Rodriguez-Veiga, P., Wheeler, J., Louis, V.,Tansey, K., and Balzter, H., 2017, Quantifying forest biomass carbon stocks from space. Current Forestry Reports, 1-18. https://doi.org/10.1007/s40725-017-0052-5
  30. Arellano, P., Tansey, K., Balzter, H., and Tellkamp, M., 2017, Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon Rainforest of Ecuador. PLoS ONE 12(1): e0169867. https://doi.org/10.1371/journal.pone.0169867

Email me for details about earlier publications.

.

Supervision

Earth observation & remote sensing Land use and land cover change Fire disturbance and burned area mapping Landscape degradation and deforestation Agri-Tech crop yield and crop stress detection

Teaching

GY1423: Exploring our Digital Planet - Undergraduate year 1 module delivered by BSc and BA Geography students. GY3439: Understanding the Tropical Forests of SE Asia - Undergraduate year 3 module. GY7705: Remote Sensing - Taught postgraduate module.

Press and media

Earth observation & remote sensing Land use and land cover change Fire disturbance and burned area mapping Landscape degradation and deforestation Agri-Tech crop yield and crop stress detection
Back to top
arrow-downarrow-down-3arrow-down-2arrow-down-4arrow-leftarrow-left-3arrow-left-2arrow-leftarrow-left-4arrow-rightarrow-right-3arrow-right-2arrow-right-4arrow-uparrow-up-3arrow-up-2arrow-up-4book-2bookbuildingscalendar-2calendarcirclecrosscross-2facebookfat-l-1fat-l-2filtershead-2headinstagraminstagraminstagramlinkedinlinkedinmenuMENUMenu Arrowminusminusrotator-pausec pausepinrotator-playplayc playplussearchsnapchatsnapchatthin-l-1thin-l-2ticktweettwittertwittertwitterwechatweiboweiboyoutubeyoutube