Research Involving Animals – Division of Biomedical Services
2023 news
Please see below for articles published in 2023.
Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection
David G. Glanville; Ozcan Gazioglu; Michela Marra; Valerie L. Tokars; Tatyana Kushnir; Medhanie Habtom; Nicholas J. Croucher; Yaffa Mizrachi Nebenzahl; Alfonso Mondragon; Hasan Yesilkaya; Andrew T. Ulijasz
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cisregulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen’s serotype-specific disease outcomes.
- Read the full article from Plos.org
GRK2 expression and catalytic activity are essential for vasoconstrictor/ERK-stimulated arterial smooth muscle proliferation
Asma Alonazi, Craig A Nash, Chuan-Han Wang, Elena Christofidou, John Challis, Jonathon Willets
Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.
- Read the full article from sciencedirect.com