Dr Kal Karim

Associate Professor of Organic and Computational Chemistry

School/Department: Chemistry, School of

Telephone: +44 (0)116 294 4668



My research the area of diagnostics and molecularly imprinted polymers (MIPs). I have established my research area in the computational design of MIPs with high affinity and specificity for a wide range of targets with industrial and academic collaborators. 

My main areas are (i) development of generic modelling tools for computational design of MIPs; (ii) design and development of polymers for separation/purification of drug targets, environmental pollutants and food toxins; (iii) development of novel MIP sensors for the detection of anaesthetics and antibiotic drugs. 

My currently research interest is on predictive design of nanoparticles for diagnostics and therapeutic applications. 

I am the Chemistry Dalian Leicester Institute Program Director as well as the Careers and Placement and Plagiarism Tutor.


I have established my research area in the rational design and synthesis of synthetic receptors based on molecularly imprinted polymers (MIPs). I lead the Molecular Modelling activity within Leicester Biotechnology Group and use in silico methods to tailor the properties of polymers to specific applications in areas such as: drug development, sensors, assays, separation and purification of target compounds. 
My current work involves applications in drug discovery, the detection of toxins and environmental pollutants and the rational design of polymers for clinical applications
Some of my major scientific achievements are:

• The use of computational tools as a general method for the rational design of Molecularly Imprinted Polymers (MIPs)
• The design and development of polymers for the separation and purification for drug targets such as anaesthetics, anti-asthmatics, corticosteroids, antibiotics and stimulators
• The application of MIPs in the large scale purification and separation of pharmaceuticals
• The design of polymers for the detection of environmental pollutants (both natural and man-made) and toxins (algal and mycotoxins)


Guha, A., Ahmad, O. S., Guerreiro, A., Karim, K., Sandstrom, N., Ostanin, V. P., . Ghosh, S. K. (2020). Direct detection of small molecules using a nano-molecular imprinted polymer receptor and a quartz crystal resonator driven at a fixed frequency and amplitude. Biosensors and Bioelectronics, 158, 10 pages. doi:10.1016/j.bios.2020.112176

Piletska, E. V., Guerreiro, A., Mersiyanova, M., Cowen, T., Canfarotta, F., Piletsky, S.,Piletsky, S. (2020). Probing Peptide Sequences on Their Ability to Generate Affinity Sites in Molecularly Imprinted Polymers. LANGMUIR, 36(1), 279-283. doi:10.1021/acs.langmuir.9b3410

Cowen, T., Karim, K., & Piletsky, S. A. (2019). Modeling molecularly imprinted polymer mechanics. In Smart Polymer Catalysts and Tunable Catalysis (pp. 51-75). doi:10.1016/B978-0-12-811840-5.00003-4

Munawar, H., Smolinska-Kempisty, K., Cruz, A. G., Canfarotta, F., Piletska, E., Karim, K., & Piletsky, S. A. (2018). Molecularly imprinted polymer nanoparticle-based assay (MINA): Application for fumonisin B1 determination. Analyst, 143(14), 3481-3488. doi:10.1039/c8an00322j

Viveiros, R., Karim, K., Piletsky, S. A., Heggie, W., & Casimiro, T. (2017). Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach. JOURNAL OF CLEANER PRODUCTION, 168, 1025-1031. doi:10.1016/j.jclepro.2017.09.026

Smolinska-Kempisty, K., Ahmad, O. S., Guerreiro, A., Karim, K., Piletska, E., & Piletsky, S. (2017). New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosensors & bioelectronics, 96, 49-54. doi:10.1016/j.bios.2017.04.034

Cowen, T., Busato, M., Karim, K., & Piletsky, S. A. (2016). In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm. MACROMOLECULAR RAPID COMMUNICATIONS, 37(24), 2011-2016. doi:10.1002/marc.201600515

Cowen, T., Karim, K., & Piletsky, S. (2016). Computational approaches in the design of synthetic receptors - A review. ANALYTICA CHIMICA ACTA, 936, 62-74. doi:10.1016/j.aca.2016.07.027

Guerreiro, A., Poma, A., Karim, K., Moczko, E., Takarada, J., de Vargas-Sansalvador, I. P., Piletsky, S. (2014). Influence of surface-imprinted nanoparticles on trypsin activity. Adv Healthc Mater, 3(9), 1426-1429. doi:10.1002/adhm.201300634

Karim, K., Breton, F., Rouillon, R., Piletska, E. V., Guerreiro, A., Chianella, I., & Piletsky, S. A. (2005). How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Reviews, 57(12), 1795-1808. doi:10.1016/j.addr.2005.07.013


Polymer Chemistry Computational Design Sensors and Assays Analytical Chemistry Organic Chemistry


I contribute to teaching teach on modules at all levels from Foundation year to MSc level. My main responsibilities are a module convenor on (Introduction to Chemistry (CH0061) General Chemistry (CH1200) and Advanced Materials (CH3208). As Careers tutor I am responsible for embedding employability across the School and also provide lectures and education on Plagiarism. I also support laboratory demonstrating.

Press and media

General Chemistry Nanomaterials Polymer Chemistry


2016: Fellow, Higher Education Academy (HEA), University of Leicester.
1995: PhD in Organic Chemistry, University of Essex.
1990: B.Sc. in Chemistry 2.1 (with honours), University of Essex.

Back to top