People
Dr Kal Karim
Associate Professor of Organic and Computational Chemistry
Profile
My main areas are (i) development of generic modelling tools for computational design of MIPs; (ii) design and development of polymers for separation/purification of drug targets, environmental pollutants and food toxins; (iii) development of novel MIP sensors for the detection of anaesthetics and antibiotic drugs.
My currently research interest is on predictive design of nanoparticles for diagnostics and therapeutic applications.
I am the Chemistry Dalian Leicester Institute Program Director as well as the Careers and Placement and Plagiarism Tutor.
Research
My current work involves applications in drug discovery, the detection of toxins and environmental pollutants and the rational design of polymers for clinical applications
Some of my major scientific achievements are:
• The use of computational tools as a general method for the rational design of Molecularly Imprinted Polymers (MIPs)
• The design and development of polymers for the separation and purification for drug targets such as anaesthetics, anti-asthmatics, corticosteroids, antibiotics and stimulators
• The application of MIPs in the large scale purification and separation of pharmaceuticals
• The design of polymers for the detection of environmental pollutants (both natural and man-made) and toxins (algal and mycotoxins)
Publications
Guha, A., Ahmad, O. S., Guerreiro, A., Karim, K., Sandstrom, N., Ostanin, V. P., . Ghosh, S. K. (2020). Direct detection of small molecules using a nano-molecular imprinted polymer receptor and a quartz crystal resonator driven at a fixed frequency and amplitude. Biosensors and Bioelectronics, 158, 10 pages. doi:10.1016/j.bios.2020.112176
Piletska, E. V., Guerreiro, A., Mersiyanova, M., Cowen, T., Canfarotta, F., Piletsky, S.,Piletsky, S. (2020). Probing Peptide Sequences on Their Ability to Generate Affinity Sites in Molecularly Imprinted Polymers. LANGMUIR, 36(1), 279-283. doi:10.1021/acs.langmuir.9b3410
Cowen, T., Karim, K., & Piletsky, S. A. (2019). Modeling molecularly imprinted polymer mechanics. In Smart Polymer Catalysts and Tunable Catalysis (pp. 51-75). doi:10.1016/B978-0-12-811840-5.00003-4
Munawar, H., Smolinska-Kempisty, K., Cruz, A. G., Canfarotta, F., Piletska, E., Karim, K., & Piletsky, S. A. (2018). Molecularly imprinted polymer nanoparticle-based assay (MINA): Application for fumonisin B1 determination. Analyst, 143(14), 3481-3488. doi:10.1039/c8an00322j
Viveiros, R., Karim, K., Piletsky, S. A., Heggie, W., & Casimiro, T. (2017). Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach. JOURNAL OF CLEANER PRODUCTION, 168, 1025-1031. doi:10.1016/j.jclepro.2017.09.026
Smolinska-Kempisty, K., Ahmad, O. S., Guerreiro, A., Karim, K., Piletska, E., & Piletsky, S. (2017). New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosensors & bioelectronics, 96, 49-54. doi:10.1016/j.bios.2017.04.034
Cowen, T., Busato, M., Karim, K., & Piletsky, S. A. (2016). In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm. MACROMOLECULAR RAPID COMMUNICATIONS, 37(24), 2011-2016. doi:10.1002/marc.201600515
Cowen, T., Karim, K., & Piletsky, S. (2016). Computational approaches in the design of synthetic receptors - A review. ANALYTICA CHIMICA ACTA, 936, 62-74. doi:10.1016/j.aca.2016.07.027
Guerreiro, A., Poma, A., Karim, K., Moczko, E., Takarada, J., de Vargas-Sansalvador, I. P., Piletsky, S. (2014). Influence of surface-imprinted nanoparticles on trypsin activity. Adv Healthc Mater, 3(9), 1426-1429. doi:10.1002/adhm.201300634
Karim, K., Breton, F., Rouillon, R., Piletska, E. V., Guerreiro, A., Chianella, I., & Piletsky, S. A. (2005). How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Reviews, 57(12), 1795-1808. doi:10.1016/j.addr.2005.07.013
Supervision
Teaching
Press and media
Qualifications
1995: PhD in Organic Chemistry, University of Essex.
1990: B.Sc. in Chemistry 2.1 (with honours), University of Essex.