Physics students calculate how to build Star Trek photon torpedoes

Physics students have boldly gone where no student has gone before – by calculating one way to potentially build photon torpedoes seen in the Star Trek universe.

Announced to coincide with the release of Star Trek: Beyond, which opens in UK and US cinemas on 22 July, the students’ findings suggest that in order to function correctly, a photon torpedo could be made out of heavy metals such as lead or uranium, as metals with fewer protons would not have the necessary cascade length.

Photon torpedoes featured prominently as the resting place of Benedict Cumberbatch’s Khan in the 2013 film Star Trek: Into Darkness. Khan had been cryogenically frozen within the torpedo, before waking to assume the role of the film’s antagonist.

Merging their passion for physics and Star Trek, the students examined the materials which could plausibly be used to build one of the deadly weapons.

Through detailed analysis of the show, they found that one plausible way for the torpedoes to work is by enacting an ‘Annihilation reaction’ in its core. This reaction involves anti-matter and matter colliding with one another to cause a chain reaction, resulting in an explosion.

By examining the cascade lengths of various metals, they concluded that, if someone wished to build a photon torpedo at home, one way could be to make it out of a metal with a greater proton number than iron, as any metal that contains fewer protons would not have the subsequent cascade length for a reaction to take place.

The students presented their findings in a short article for the Journal of Physics Special Topics, a peer-reviewed student journal run by the University’s Department of Physics and Astronomy. The student-run journal is designed to give students practical experience of writing, editing, publishing and reviewing scientific papers.