Investment opportunity for companies supplying forensic or electrical equipment

Challenge

• Currently, forensically useable fingerprints are only recovered from 10% of evidential metal objects, weapons, jewellery, tools or handles, because traditional methods are not very effective in developing prints of unknown history, that may be degraded over time or due to the environment

• It is difficult to visualise fingerprints deposited on dark or multicoloured backgrounds

• Visualising fingerprints on metal surfaces is particularly challenging

• A significant number of prints cannot be used due to poor quality and poor visualisation with powders

Solution

Using its expertise in forensic sciences, the University of Leicester has developed a method of developing fingerprints that is:

• **Superior**: enhanced detection, compared to current methods, of low-grade fingerprints on metal surfaces

• **Effective**: increase in forensically useable fingerprints independent of print history

• **Versatile**: a single reagent gives a choice of colours (yellow, green, blue) to provide maximum contrast between fingerprint deposit and surface

• **Practical**: simple, cheap and safe to perform

Enhanced detection of latent fingerprints
Benefits

• Enhanced, history-resilient, detection of latent fingerprints deposited on metals of any colour, resulting in a remarkable increase in the recovery of forensically useable prints.

• Our novel technology involves the electropolymerisation of a monomer onto a conducting surface.

• The enhanced performance and versatility of our technology present a strong case for it to be the method of first choice for the processing of metal objects (particularly of uncertain history) from crime scenes in the near future.

• In contrast to powders or superglue, minimal residue is required to “mask” the surface and achieve visualisation of a fingerprint. Uniquely the polymer colour can then be changed by varying the potential, allowing maximum contrast between the print and surface to be achieved.

Market

This technology would replace a significant part of the use of forensic powders, the market for which is $1 billion worldwide.

IP status

Patent applications have been filed in the UK and Europe.

Are you a company supplying forensic or electrical equipment looking for an investment opportunity? Contact us to find out more:

Shanjoy Mairembam, Senior Licensing & Commercialisation Manager, Research and Enterprise Division, University of Leicester, University Road, Leicester LE1 7RH, UK

e: ssm34@le.ac.uk t: +44 (0)116 252 2769

This project was funded by EMDA/ERDF