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The mathematics of realistic paintings.
The title of the first painting opposite is The Miracle of the child
falling from the balcony and was painted by the Italian artist Si-
mone Martini circa 1328. The painting certainly has some artisic
merit, but something is amiss. After some reflection one might
come to the conclusion that it somehow does not look realistic.
The second painting is aslo by an Italian artist, Raffaello Sanzio
da Urbino (commonly known as Raphael). It is entitled The
School of Athens and was painted in 1518. This painting cer-
tainly looks realistic.
But is there a mathematical reason why the first painting is unre-
alistic while the second is realistic? The answer is affirmative and
it was first provided by the Italian architect Filippo Brunelleschi
(1377-1446). Brunelleschi discovered the theory of perspective,
wherein parallel lines on a horizontal plane depicted in the verti-
cal plane meet at a (vanishing) point. For a picture to be realistic
it must have perspective: all sets of parallel lines in the picture
must meet at one point. When you view a long straight road it
appears to taper to point. Trees nearer you appear to be larger
than the ones further away. This is perspective.

• If you identify sets of parallel lines in Martini’s painting
you will see they do not meet at one point: in fact they
meet in several points.

• On the other hand, in Raphael’s painting, all parallel lines
meet in the centre of the doorway in the background.

It is not surprising to recognise that Martini’s painting was made
before Brunelleschi discovered his theory of perspective.

Two medieval proofs of
‘Pythagoras’ theorem’.
These interesting proofs were first
presented in the 11th century 1. The
first proof is both visual and alge-
braic.
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Four copies of the right angled tri-
angle ABC with hypotenuse BC are
placed with the shorter ‘leg’ resting
on the longer to form a square of side
BC and an inner square as shown.

Now the area of each of the four con-
gruent right angled triangles is equal
to 1

2AB.AC.

And the area of the square of length
BC is equal to the area of the smaller
inner square plus the area of the four
congruent triangles.

It can be seen that the smaller inner
square has length (AC −AB).

So BC2 = (AC −AB)2 + 4. 12AB.AC

Simplifying gives BC2 = AC2+AB2.

The second proof requires some an-
gle geometry and algebra. In a
right angled triangle ABC with hy-
potenuse BC, the perpendicular is
dropped from A to the hypotenuse
BC meeting it at D.
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If we let ∠ABC = β then, from right
angled triangle ADB, we see that
∠BAD =

π

2
− β.

1by the mathematician Bhaskara II in his 11th century study the Bijaganita.
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Considering angles in right angled
triangle ABC we see that
∠ACB =

π

2
− β.

Finally considering angles in right
angled triangle ADC we see that
∠DAC = β.
So the picture with these facts is:
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This means triangles ABC and ADB

are similar. So
AB

BC
=
BD

AB
.

Thus BD =
AB2

BC
...(1)

Similarly triangles ABC and ADC

are similar. So
AC

BC
=
DC

AC
.

Thus DC =
AC2

BC
...(2)

Using (1) and (2) we have:

BC = BD +DC

=
AB2

BC
+
AC2

BC

=
AB2 +AC2

BC

From this we see that
BC2 = AC2 +AB2.

The medieval calculator.
Christopher Grienberger, who was

a mathematics professor at the Je-
suit Collegio Romano in Rome in the
16th century, was involved in a race to
produce, using manual methods nat-
urally, the most accurate trigonomet-
ric tables graduated in increments of
1 minute. Given that there are 60
minutes in one degree, his sine table
alone had 60× 90 = 5400 entries!

To get an idea of length of time
taken by Grienberger to manually
compute his sine table, which had a
minimum of 18 places of decimals for
each entry, we can refer to his state-
ment in a letter dated 15 Dec 1596: “I
have reduced the calculation so that
I am able to complete 20 sines suffi-
ciently well, nay, even 30 sines and if
school and private reading were not
a hindrance.....”2

Grienberger was a calculator, a
human involved in the perform-
ing complicated arithmetic. The sine
table effort occupied Grienberger
’morning, noon and night every day’
for a period of 3 years. He maintained
accuracy in arithmetic by using the
method of ’casting out 9’s’ 3. Here is
a sample of his arithmetic:

Of course, now a calculator is
an inanimate object that can effort-
lessly and quickly perform the com-
plicated arithmetic that Grienberger
had to laboriously do. Nevertheless
it is valuable to know about Grien-
berger’s methods as it informs and il-
luminates sixth form trigonometry.

Grienberger’s sine table was con-
structed with a seed value of sin
1’ (1’ = 1 minute) to 22 places
of decimals. His astounding manu-
ally computed value for sin1’ was
0.0002908882045634245911, which
is an amazingly accurate estimate
given that the correct value is
0.0002908882045634245964 to 22
places of decimals.

After having the value of sine 1’,
Grienberger computed the value of
cosine 1’ using the standard identity
cosx =

√
1− sin2 x. Of course, there

was the small matter of squaring a
number with 22 places of decimals
and square rooting a number with
even more decimal places.

Grienberger’s table was then built up
from the initial values of sine 1’ and
cosine 1’ using formulae which are
well known in sixth form mathemat-
ics.
1) To get sine and cosine of 2′ he used
double angle formulae:
sin 2′ = 2 sin 1′ cos 1′

cos 2′ = 1− 2 sin2 1′

2) To get sines and cosines of subse-
quent minutes he used these identi-
ties which the reader is invited to ver-
ify:

sinA′

≡ 2 sin 1′ cos(A− 1)′ + sin(A− 2)′.

cosA′

≡ cos(A− 2)′ − 2 sin 1′ sin(A− 1)′.

So, for example, having the values of
sine and cosine of 1’ and 2’ he could
compute:

sin 3′ = 2 sin 1′ cos 2′ + sin 1′

cos 3′ = cos 1′ − 2 sin 1′ sin 2′

And the procedure was repeated for
sines and cosines of subsequent min-
utes.

3) To obtain sines of bigger angles
Grienberger used these formulae:

sin(60◦+A◦) ≡ sinA◦+sin(60◦−A◦)
sin(90◦ −A◦) ≡ cosA◦

So, for example, having the values
of sines of 2◦14′, 3◦28′, 57◦46′, and
56◦32′ he could compute:
sin 62◦14′ = sin 2◦14′ + sin 57◦46′

sin 63◦28′ = sin 3◦28′ + sin 56◦32′.

And knowing the value of cosine
of θ◦ ≤ 45◦ he could compute:
sin 54◦34′ = cos 35◦26′

sin 74◦4′ = cos 15◦56′, etc.

A sample from from Grienberger’s
original manuscript is presented be-
low. Here you should be able to iden-
tify Grienberger’s sine values for the
angles 2◦14′, 2◦16′, 87◦46′ and 87◦44′.

Grienberger completed his sine
table on 14 December 1596 and the
completed manuscript, GES874, is
lodged in the Bibilioteca Nazionale
in Rome. Due to certain technical
difficulties involving tangent values
his tables were finally published in
abridged form in 1630.

Readers wishing to find out
more about the history and con-
struction of trigonometric tables
in medeival times can refer to
http://bit.ly/ZmBsmT.

2Thanks to Dr R P Burn, University of Exeter, for the translation from the Latin.
3See http://bit.ly/wUkTA to find out about ’casting out 9’s’.
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