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Algebra and broken bones.

Al-Khwarizmi, a mathematician from Persia (now Iran),
wrote the first treatise on algebra: Hisab al-jabr w’al-
mugqabala in 820 AD. The word algebra is a corruption
of al-jabr which means restoration. Now if something
needs restoring it must have been damaged, broken or
fractured. How is this possible in algebra? Here, one pos-
sible way of seeing this, is as follows: when we open
brackets we fracture and when we factorise we restore.

The restoration of broken parts meaning of al-jabr is
still evident in modern times. In Spain, where the Arabs
held sway for a long period, al-jabr was also taken to
mean the restoration of broken bones. So there arose
the profession of algebrista who healed fractured bones.
The algebrista also practiced medical blood letting. So
in times past one would find the trade sign Algebrista y
Sangrador in many Spanish cities. We can still find ev-
idence of this profession in the definition of algebra in
current Spanish dictionaries. The following definition of
the word ’algebra’ is from the Real Academia Espanola

(http://buscon.rae.es/drae/srv/search?id=BZWT11t5vDXX2Smmq8pf):

1. f. Parte de las matematicas en la cual las operaciones aritmeticas son generalizadas empleando
numeros, letras y signos. (Translation: That part of mathematics in which arithmetic operations
are generlaized using numbers, letters and symbols.)

2. f. desus. Arte de restituir a su lugar los huesos dislocados (Translation: the art of restoring
broken bones to their original locations.)

Moessner’s theorem or how
to generate powers of num-
bers in an interesting way.

There is an interesting way to
obtain powers of integers by cumu-
lative addition of specific sequences
of numbers. It represents a good op-
portunity to get pupils to see some of
the rich patterns in natural numbers.
For n'" powers the procedure in-
volves the removal of every n'" num-
ber from the list of natural numbers.

A. Square numbers.
Start with the natural numbers:

1,2,3,4,5,6,7,8,9,10,11,12,13, ....

First remove every 2"¢ number from
this list:
1, 3, 5, 7, 9, 11, 13,...

Now add cumulatively from the left:
1, 3, 5 7, 9 11, 13,...
1, 4, 9, 16, 25, 36, 49,...

Which is a list of square numbers.

B. Cubes.

Start with the natural numbers:
1,2,3,4,5,6,7,8,9,10,11,12,13, ....
Now remove every 3¢ number:
1,2, 4,5, 7,8, 10,11, 13,....
Now add cumulatively from the left:
1,2, 4,5, 7,8, 10,11, 13,....
1,3, 7,12, 19,27, 37,48, 61,....
Remove every 2"¢ number :

1, 7, 19, 37, 61,....
Add cumulatively from the left:

1, 8§, 27, 64, 125,....

And we have the list of cubes.
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For fourth powers:

Delete every 4! number —

do cumulative addition —

delete every 3¢ number —

do cumulative addition —

delete every 2" number —

do cumulative addition to obtain
fourth powers.

And so on for higher powers. This
highly interesting procedure arises
from Moessner’s theorem. For more
about this theorem please do see:
http://bit.ly/18IpPVL.

The odd thing about odd and
even functions.

A function f(z), with a domain
symmetrical about the origin, that
satisfies that f(—z) = —f(x) for all z
in its domain is an odd function. An
odd function has a graph that pos-
sesses half turn rotational symmetry
about the origin.

f(z) = sinz is odd as illustrated by
its the graph:

A function g¢(z), with a domain
symmetrical about the origin, that
satisfies that g(—z) = g(x) for all z
in its domain is an even function. An
even function has a graph with re-
flection symmetry about the y - axis.
g(z) = cosz is even as illustrated by
its the graph:

It can easily be shown that, for any
non-zero integer k, fi(x) = sinkx is
an odd function and g, (x) = cos kx is
an even function.

The questions that now arise from
our knowledge of odd and even num-
bers are:

1. Is the sum of two odd functions
even?

2. Is the sum of two even func-
tions even?

Consider f(z) = fi(z) + f3(z) =
sin z 4 sin 3z. Its graph is:

This seems to imply that the sum
of two odd functions is odd (unlike
the case with numbers).

The following argument proves this
conjecture:

Let F and F’ be odd functions with,
for the sake of simplicity, identical do-
mains. Then

(F + F')(—z) = F(~a) + F'(~)

= —F(x) — F'(z): F and F’ are odd
= —(F+F))(x)

Therefore (F' + F’) is odd.

Now Consider g(z) = g2(z) +g5(x) =
cos 2z + cos bx. Its graph is:

The evidence seems to suggest
that the sum of two even functions is
even (like the case with numbers).
The following argument proves the
conjecture:

Let G and G’ be even functions.

Then:

(G+G)(=2) = G(—2) + G'(-x)
= G(z) + G'(z): G and G’ are even
= (G+G)(x)

Thus (G + G’) is even.

So the answers to the two questions
are:

1. Is the sum of two odd functions
even? No. It is still odd.

2. Is the sum of two even func-
tions even? Yes.

Nothing, of course, can be said of
the sum of an odd and an even func-
tion (examine the graph of a function
that is the sum of an odd and an even
function. Also see exercise* below).
But what about the product of odd
and even function? Let’s examine the
graph of this product of an odd and
an even function:

f3(x)gs(z) = sin 3z cos 5x.

Its graph above implies that
f3(x)gs(z) is odd. The result that
the product of an odd function F' and
an even function G is odd, unlike
with numbers, and this result true in
general. Here is the proof:

FG(—z) = F(—2)G(—x)
=—F(z).G(z) = —FG(x)

So F'G is odd.

The reader is invited to investi-
gate the odd arithmetic of odd and
even functions further. The reader
is also invited to verify that *every
function h(z) with the requisite do-
main is the sum of an odd function
F(z) = 5 (h(z) — h(~2))
and an even function
G(z) = } (h(a) + h(~2).

This article is based on interactions
with students in FMSP sixth form
courses. More on this topic here:
http://bit.ly/15i0SjU
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