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The medieval palace that pre-
dates a modern geometrical
discovery.
The Alhambra palace in the Spanish
city of Granada (top picture opposite)
was constructed in the 13th century by
the Nasrid king Mohammed ibn Yusuf
ben Nasr. That fact by itself is not sur-
prising as there are several such me-
dieval palaces in Southern Spain, no-
tably in Sevilla and Cordoba. What
makes the Alhambra stand out from a
mathematical perspective is the pres-
ence of all the 17 wallpaper groups
(https://bit.ly/2MVTE28) in the motifs
and designs on it walls. In simple terms
a wallpaper group is an infinitely re-
peatable pattern in two dimensions;
these are often called tessellations. The
first proof that there are just 17 differ-
ent types of wallpaper group or tessella-
tion started appearing from the late 19th

century onwards. Tessellations have ei-
ther no rotational symmetry or rota-
tional symmetry of orders 2, 3, 4 or 6.

The interesting tessellations have rotational symmetry of orders 2, 3, 4 or 6 and segments of
ones in the Alhambra corresponding to these are shown in the 4 images opposite (clockwise
from the top left). The modern day artist who popularised the tessellations found in the Al-
hambra was M. C. Escher. An interesting mathematical field trip for sixth form mathematics
students would be to visit the Alhambra and identify the 17 types of tessellation.

Perhaps a convincing expla-
nation of why −1×−1 = 1?

The problem of explaining why
−1 × −1 = 1 is one that vexes both
teachers and students. Of course
there is a formal proof of this us-
ing field axioms but this is of limited
use in the classroom where an ’or-
ganic’ explanation is more relevant.
For example one can give an ’organic’
explanation of why 3 × 4 = 12 by
arranging a set of 4 rows each con-
taining 3 objects and counting the
whole set. Informally speaking what
we seek is an ’organic’ explanation of
why −×− = +. The ’organic’ expla-
nation that I have encountered that

could possibly meet with approval in
the classroom is the following:
1. The positive direction is walking
forwards. So let walking forwards be
signified by ′+′.
2. The negative direction is walking
backwards. So let walking backwards
be signified by ′−′.

This seems practically sensible and
few would argue against this defi-
nition. We can also equivalently say
that:
3. ′+′ is a video recording played for-
wards.
4. And ′−′ is a video recording played
in reverse.

In this context when any two of the
four actions above are followed one
after the other we say that the two
actions are multiplied ′×′.

So for example if we forwards play a
video recording of a person walking
forwards we are exhibiting + × +.
And since the video shows a person
walking forwards we can conclude
that +×+ = +.
What happens if a video recording of
a person walking backwards is played
in reverse? This is exhibiting − × −.
Since the video will show a person
walking forwards we may conclude
that −×− = +.
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Formulae for triangle num-
bers and their equivalents in
3 and higher dimensions.
The well known sequence of triangu-
lar numbers is given by the diagram:

The sequence is derived by counting
successively the points in the first
(trivial) triangle, the second triangle,
and so on. The sequence is: 1, 3, 6,
10,........

The sequence can be re-written as
the successive sums of the natural
numbers:

1, (1+2), (1+2+3), (1+2+3+4),.....

In three dimensions the analogue is
the sequence of tetrahedral numbers
given by the diagram:

As one can see the sequence is
formed by adding successive trian-
gular numbers:

1, 1+3, 1+3+6, 1+3+6+10, ......

Formally, being located in 2 dimen-
sions, the triangular numbers are
denoted by P2(m), where m denotes
the sequence placement. So

P2(1) = 1, P2(2) = 3, P2(3) = 6, ........

The tetrahedral numbers are denoted
by P3(m),

P3(1) = 1, P3(2) = 4, P2(3) =
10, P2(4) = 20, ........

The letter P stands for polytope, the
generalisation of triangles in higher
dimensions.

The formula P2(m) = 1
2m(m + 1)

is well known in school mathematics.

Evidently P3(m) = P2(1) + P2(2) +
..... + P2(m). That is, the mth tetra-
hedral numbers is the sum of the
first m triangular numbers. Deriving
a formula for P3(m) is considered
geometrically in the University of Le-
icester/AMSP y12 advanced problem
solving classes, but it can also be
found algebraically if one knows the
formula for the sum of the first m
squares; namely the formula

m∑
r=1

r2 = 1
6m(m+ 1)(2m+ 1). Then

P3(m) =

m∑
r=1

P2(r)

=

m∑
r=1

1

2
r(r + 1)

=
1

2

(
m∑
r=1

r2 +

m∑
r=1

r

)

Putting
m∑
r=1

r2 = 1
6m(m+ 1)(2m+ 1)

and
m∑
r=1

r = 1
2m(m + 1) in the above

and simplifying will give us:

P3(m) = 1
6m(m+ 1)(m+ 2).

Finding a formula for P4(m), the
analogue of the triangular numbers
in 4 dimensions, requires finding the

sum
m∑
r=1

P3(r), which algebraically

requires a formula for
m∑
r=1

r3. Subse-

quent polytope numbers will increase
the degree of algebraic difficulty.

Nevertheless is one examines the
formulae P2(m) = 1

2m(m + 1) and
P3(m) = 1

6m(m + 1)(m + 2) one can
conjecture that

P4(m) = 1
4!m(m + 1)(m + 2)(m + 3)

and
Pn(m) = 1

n!m(m+ 1)...(m+ n− 1).

The derivation of the formula for
Pn(m) is part of problem 64 in the
y13 challenge problems document
found in the outreach webpage. Only
if you have done the y13 binomial

expansion and relish a challenge,
the steps to derive the formula for
Pn(m) that bypasses the need to find
m∑
r=1

rk, k ≥ 3, is given below. Any

reader who submits a full solution to
problem 64 will be acknowledged in
the newsletter number 8.

1. Consider the function f(m,n) de-
fined on pairs of non-negative inte-
gers which satisfies the following:

f(m,n) = f(m − 1, n) + f(m,n − 1),
when both m and n are positive.
f(m, 0) = 1, when m ≥ 0 and
f(0, n) = 0, when n ≥ 1.

One can find that
f(m, 1) = m,
f(m, 2) = 1

2m(m+ 1) = P2(m),
f(m, 3) = 1

6m(m+1)(m+2) = P3(m),
and that subsequently, for n ≥ 3,
f(m,n) = Pn(m).

2. Show that
∞∑

m=0

∞∑
n=0

f(m,n)xmyn =

(1 − y)(1 − x − y)−1, whenever
−1 < x + y < 1 . To prove this set

S =
∞∑

m=0

∞∑
n=0

f(m,n)xmyn and then

show that S = 1 + xS + yS − y (This
will need some dogged determina-
tion!).

3. Find the coefficient C of xmyn

in the binomial expansion of
(1− y) (1− (x+ y))

−1
.

With some care you should find that
C = m+nCn −m+n−1 Cn−1

=
(m+ n)!

m!n!
− (m+ n− 1)!

m!(n− 1)!

= .... =
m(m+ 1)...(m+ n− 1)

n!
.

Since the coefficient of xmyn on ei-
ther side of

∞∑
m=0

∞∑
n=0

f(m,n)xmyn =
1− y

1− x− y

is the same you can conclude that

f(m,n) =
m(m+ 1)...(m+ n− 1)

n!

Or Pn(m) =
m(m+ 1)...(m+ n− 1)

n!
.
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