

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2023/24

Date created: N/ALast amended: 04/07/2023Version no. 2

1. Programme title(s) and code(s):

a) STEM Foundation Year

The STEM Foundation Year programme provides progression onto BSc / Integrated Masters degrees in Chemistry, Engineering, Geography, Geology, Informatics, Mathematics, and Physics and Astronomy. It is not available as a stand-alone award.

HECOS Code

HECOS Code	%
100390	100

b) UCAS Code (where required)

Geography with foundation year	F992
Geology with foundation year	F993
Chemistry with foundation year	F991
Engineering with foundation year	H991
Physics with foundation year	F995
Mathematics with foundation year	G992
Computer Science with foundation year	G991
Creative Computing with foundation year	G993

2. Awarding body or institution:

University of Leicester

3. a) Mode of study

Full-time

b) Type of study

Campus-based

4. Registration periods:

The STEM Foundation Year will count towards the normal and maximum registration period of the degree programme that a student may progress to.

The normal period of registration for the STEM Foundation Year is one year (progressing to a 3 or 4 year UG degree).

The maximum period of registration for the STEM Foundation Year is 2 years.

5. Typical entry requirements

A-level: BCC/CCC or points equivalent from best three A-levels, to include appropriate subject(s).

BTEC Diploma: DDM in an appropriate scientific or engineering discipline.

Access to HE courses in Science and Engineering: 45 L3 credits, including 24 at Distinction.

The STEM Foundation Year is designed to provide a route to higher education for applicants who do not have the right entry requirements for first year entry of the undergraduate programmes.

6. Accreditation of Prior Learning

Not applicable

7. Programme aims

The programme aims to:

- Develop the professional attributes and study skills that will equip students to thrive in a undergraduate degree programme and beyond
- Enable students to progress to an appropriate undergraduate programme through the acquisition of discipline specific knowledge at the required standard

8. Reference points used to inform the programme specification

- QAA Benchmarking Statement
- Framework for Higher Education Qualifications (FHEQ)
- UK Quality Code for Higher Education
- University Learning Strategy
- University Assessment Strategy
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual)
- United Nations Education for Sustainable Development Goals
- Student Destinations Data
- Specification documents for various A-level mathematics qualifications
- Specification documents for various A-level science (Physics, Chemistry, Biology, Geography, Geology, Computer Science) qualifications
- Programme (and module) specifications from the following courses to which this foundation year provides progression

9. Programme Outcomes

Unless otherwise stated, programme outcomes apply to all awards specified in 1. Programme title(s).

a) Discipline specific knowledge and competencies

i) Mastery of an appropriate body of knowledge

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should have knowledge of mathematics and science to the appropriate A level syllabus	 Course texts and other specially prepared resources Lectures, problem-solving classes Group work/peer learning. Regular coursework Small group tutorials 	 Online core-learning exercises Coursework assessments Scientific/technical writing assessments End of semester examinations

ii) Understanding and application of key concepts and techniques

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to apply science and mathematical knowledge to specific scenarios	Course texts and other specially prepared resources	Online core-learning exercisesCoursework assessments
Kilowieuge to specific scenarios	Lectures, problem-solving classesGroup work/peer learning	 Scientific/technical writing assessments
	Regular courseworkSmall group tutorials	End of semester examinations

iii) Critical analysis of key issues

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
 Students should be able to: explain the process of scientific enquiry, the roles of experiment and theory, and the limits of science evaluate the reliability of information retrieved from electronic resources 	 Induction sessions Resource based learning Group work/peer learning Support Sessions 	 Experimental/project work Scientific/technical writing assessments

iv) Clear and concise presentation of material

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to communicate scientific ideas through written material and oral presentations	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Small group tutorials Supprot sessions Formative feedback on 	 Scientific/technical writing assessments Tutorial presentation(s)

v) Critical appraisal of evidence with appropriate insight

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
 Students should be able to: distinguish between precision and accuracy, and explain the role of experimental error in the scientific process evaluate the reliability of data and appreciate associated errors and uncertainties 	 Embedded throughout the programme in: Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials Experimental/project work 	 Experimental/project work Scientific/technical writing assessments

vi) Other discipline specific competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
 Students should be able to: use mathematical models to explain various features of scientific phenomena use mathematics as an integral part of the scientific process develop observational and descriptive skills in the sciences 	 Embedded throughout the programme in: Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials Experimental/project work Regular coursework 	 Online core-learning exercises Coursework assessments Experimental/project work Scientific/technical writing assessments End of semester examinations

b) Transferable skills

i) Oral communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to verbally communicate mathematical and scientific ideas at an appropriate level	 Course texts and other specially prepared resources. Lectures, seminars, problem-solving classes. Group work/peer learning. Small group tutorials with formative feedback Support sessions 	 Small group tutorials Problem-solving classes Tutorial presentation(s)

ii) Written communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to clearly communicate mathematical and scientific ideas in written form	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials with formative feedback Support sessions 	 Small group tutorials Problem-solving classes Scientific/technical writing assessments Academic Support sessions End of semester examinations

iii) Information technology

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
 Students should be able to use electronic resources to find information critically evaluate any retrieved information use IT resourcesto process data use IT to present information and data 	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials with formative feedback Support sessions 	 Scientific/technical writing assessments Tutorial presentation(s)

iv) Numeracy

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to apply core mathematical techniques to solve numerical problems and analyse data	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials with formative feedback Regular coursework 	 Online core-learning exercises Coursework assessments Experimental/project work Scientific/technical writing assessments End of semester examinations

v) Team working

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to work in groups to solve mathematical and	Seminars and problem-solving classes	 Seminars and problem-solving classes.
scientific problems	Group work/peer learning	Experimental/project work
	Small group tutorials	
	Experimental/project work with formative feedback	
	Support sessions	

vi) Problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
To apply scientific and mathematical knowledge to a wide variety of problems	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Group work/peer learning Small group tutorials 	 Online core-learning exercises Coursework assessments Scientific/technical writing assessments Experimental/project work End of semester examinations

vii) Information handling

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Students should be able to correctly analyse and present scientific information and draw appropriate conclusions	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Small group tutorials Support sessions 	 Online core-learning exercises Coursework assessments Experimental/project work Scientific/technical writing assessments End of semester examinations

viii) Skills for lifelong learning

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
 Students should be able to make and organise an ordered set of course and revision notes organise their time effectively record and reflect on their learning experiences assimilate and draw accurate conclusions from a wide variety of data and other resources effectively communicate scientific conclusions in both written and oral form 	 Course texts and other specially prepared resources Lectures, seminars, problem-solving classes Small group tutorials Group work/peer learning Experimental/project work Support sessions 	 Online core-learning exercises Scientific/technical writing assessments Coursework assessments Experimental/project work End of semester examinations Academic support sessions Tutorial presentation(s)

10. Progression points

The following additional award requirements for this programme have been approved.

Semester 1 Progression Board (February):

Modules CO0004 Creating Software Applications, FS0031 Mathematics 1, FS0041 Mechanics 1, FS0043 Waves and Matter, and FS0061 Scientific Computing are assessed in Semester 1. Resits will be offered for these modules where failed, apart from any non-resittable coursework assessment components, as detailed in the module specification documents. The Semester 1 Progression Board will recommend termination of a student from their course in the following scenario:

• Where a student has failed any module from FS0031 or FS0041 or FS0043, at Grade F, and cannot reach the pass mark for the module after resit of the re-sittable assessment components.

Progression from Year 0 to Year 1:

Students will be required to pass **all** Foundation Year modules.

Resits will be offered for all modules except for the following modules:

- FS0023 Laboratory Skills
- CH0062 Introductory Chemistry Practical

Reassessment will ordinarily be offered on one occasion only. However, certain coursework assessment components are not-resittable, as detailed in the module specification documents.

For students intending to study degrees in **Informatics**, there are **no other** additional progression requirements.

For students intending to study degrees in **Geography and Geology** the additional progression requirement is:

• Module CH0062 requires at least 75% completion of the lab sessions.

For students intending to study degrees **in Mathematics**, there is the additional progression requirement to pass the examination component of both FS0031 Mathematics 1 and FS0032 Mathematics 2 (see Appendix 3: Progression Table).

For students intending to study degrees **in Engineering, or Physics and Astronomy**, there is the additional progression requirement to pass the examination component of both FS0031 Mathematics 1 and FS0032 Mathematics 2 (see Appendix 3: Progression Table), and that for FS0023 Laboratory Skills a student must complete four out of the five laboratory sessions which occur in each semester.

For students intending to study degrees in **Chemistry** the additional progression requirements are:

- Module CH0062 requires at least 75% completion of the lab sessions.
- Module FS0031 Mathematics 1 requires a mark of at least 40% in the final exam.

Where a student fails to meet the progression requirement to obtain 40% in the examination component of a mathematics module (FS0031 and/or FS0032), a resit of the examination will be offered even if the module has been passed.

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course. However, a student who passes 120 credits, but fails to meet the additional modular school progression requirements after reassessment, may be offered a transfer to another course with lesser progression requirements.

11. Special features

Not applicable.

12. Indications of programme quality

The teaching methodology for STEM foundation year programme has been informed from established foundation year programmes within the university.

13. External Examiner(s) reports

Not applicable.

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2023/24

Date created: N/A Last amended: 04/07/2023 Version no. 2

Appendix 1: Programme structure (programme regulations)

The University regularly reviews its programmes and modules to ensure that they reflect the current status of the discipline and offer the best learning experience to students. On occasion, it may be necessary to alter particular aspects of a course or module.

Updates to the programme

Stream 1 - Geoscience	Removal of Natural Science pathway.
-----------------------	-------------------------------------

Stream 1: Geoscience

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	30 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	FS0031	Mathematics 1	15 credits
Sem 1	FS0061	Scientific Computing	15 credits
Sem 2	CH0062	Introductory Chemistry Practical	15 credits

Delivery period	Code	Title	Credits
Sem 2	GY0011	Principles of Earth Science and Earth Systems	15 credits
Sem 2	FS0033	Introductory Data Analysis	15 credits
Year long	FS0045	Introductory Earth and Environmental Science	30 credits
Year long	FS0050	Academic Support	15 credits

Stream 2: Chemistry

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	45 credits	30 credits
Optional	n/a	n/a	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	FS0031	Mathematics 1	15 credits
Sem 1	FS0043	Waves and Matter	15 credits
Sem 1	FS0061	Scientific Computing	15 credit
Sem 2	CH0062	Introductory Chemistry Laboratory	15 credits
Sem 2	FS0033	Introductory Data Analysis	15 credits
Year long	CH0061	Introduction to Chemistry	30 credits
Year long	FS0050	Academic Support	15 credit

Stream 3: Engineering and Physics & Astronomy

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	30 credits	45 credits	45 credits
Optional	n/a	n/a	n/a
			120 anadita in tatal

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	FS0031	Mathematics 1	15 credits
Sem 1	FS0041	Mechanics 1	15 credits
Sem 1	FS0043	Waves and Matter	15 credits
Sem 2	FS0032	Mathematics 2	15 credits
Sem 2	FS0042	Mechanics 2	15 credits
Sem 2	FS0044	Electromagnetism and Quantum Physics	15 credits
Year long	FS0023	Laboratory Skills	15 credits
Year long	FS0050	Academic Support	15 credits

23-UC/EGSEG-F-0

Stream 4: Mathematics

Credit breakdown

Status	Year long	Semester 1	Semester 2					
Core	45 credits	30 credits	45 credits					
Optional	n/a	n/a	n/a					

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	FS0031	Mathematics 1	15 credits
Sem 1	FS0041	Mechanics 1	15 credits
Sem 2	FS0032	Mathematics 2	15 credits
Sem 2	FS0042	Mechanics 2	15 credits
Sem 2	FS0033	Introductory Data Analysis	15 credits
Year long	FS0060	Introduction to Programming	30 credits
Year long	FS0050	Academic Support	15 credits

Stream 5: Informatics

Credit breakdown

Status	Year long	Semester 1	Semester 2					
Core	45 credits	30 credits	45 credits					

Status	Year long	Semester 1	Semester 2					
Optional	n/a	n/a	n/a					
			120					

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	FS0031	Mathematics 1	15 credits
Sem 1	CO0004	Creating Software Applications	15 credits
Sem 2	CO0006	Generative Design	15 credits
Sem 2	CO0007	Creative Computing	15 credits
Sem 2	FS0033	Introductory Data Analysis	15 credits
Year long	FS0060	Introduction to Programming	30 credits
Year long	FS0050	Academic Support	15 credits

Appendix 2: Module specifications

See undergraduate module specification database (Note - modules are organized by year of delivery).

Appendix 3: Progression Table

Degree Programme	Additional Progression Requirements
Chemistry In addition to passing FS0031 with a module mark of at least 40%, a mark of at least 40% must be obtained in the FS0031 exam.	
BSc with Foundation Year	In addition to passing CH0062 with a module mark of at least 40%, a student must complete 75% of the laboratory sessions and associated write- ups.

Computer Science	
BSc with Foundation Year	None
Creative Computing	
BSc with Foundation Year	None
Engineering	In addition to passing FS0031 and FS0032 with a module mark of at least 40%, a mark of at least 40% must be obtained in each of the FS0031 and FS0032 exams.
BEng with Foundation	
Year	In addition to passing FS0023 with a module mark of at least 40%, a student must complete four out of the five laboratory sessions that occur in each semester.
Geography	
BSc with Foundation Year	In addition to passing CH0062 with a module mark of at least 40%, a student must complete 75% of the laboratory sessions and associated write- ups.
Geology	
BSc with Foundation Year	In addition to passing CH0062 with a module mark of at least 40%, a student must complete 75% of the laboratory sessions and associated write- ups.
bee with roundation real	
Mathematics	In addition to passing FS0031 and FS0032 with a module mark of at least 40%, a mark of at least 40% must be obtained in each of the FS0031 and
BSc with Foundation Year	FS0032 exams.
	In addition to passing FS0031 and FS0032 with a module mark of at least 40%, a mark of at least 40% must be obtained in each of the FS0031 and
Physics and Astronomy	FS0032 exams.
BSc with Foundation Year	In addition to passing FS0023 with a module mark of at least 40%, a student must complete four out of the five laboratory sessions that occur in each semester.

Appendix 4: Skills Matrix

Programme Learning Outcomes (a) Discipline specific knowledge and competencies	FS0041 Mechanics 1	FS0042 Mechanics 2	FS0043 Waves & Matter	FS0044 EM & Quatum Physics	FS0031 Mathematics 1	FS0032 Mathematics 1	FS0023 Laboratory Sk≣s	FS0050 Academic Support	FS0033 Introductory Data Analysis	CO004 Creating Software Applications	FS0060 Introduction to porgramming	CH0061 Introduction to Chemistry	CH0062 Introductory Chemistry Practical	GY 0011 Principles of Earth Science & Systems	CO0006 Generative Design	CO0007 Creative Thinking	FS0045 Introductory Earth and Environmental Science	FS0061 Scientific Programming
(vi) Other discipline specific competencies Students should be able to use mathematical models to explain various features																		
of scientific phenomena	x	x	×	x	x	x	x	x	x			x	x	x			x	
Students should be able to view mathematics as an integral part of scientific method	x	x	x	x	x	x	x	x	x			x	x	x			x	
Students should be able to develop observational and descriptive skills in the sciences							x	x	x	x	x	x	x	x	x	x	x	x
(ii) Written communication																		
Students should be able to clearly communicate mathematical and scientific ideas in written form	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
(iii) Information technology																		
Students should be able to use electronic resources to find information	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Students should be able to critically evaluate any retrieved information	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Students should be able to use IT resources to process data								x	x							x	x	
Students should be able to use IT to present information and data								x	x	x				x		x	x	
(iv) Numeracy																		
Students should have mastery of specific elements of science and mathematics at AS and A level standard	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
(v) Team working Students should be able to work in groups to solve mathematical and scientific problems	x	x	x	x	x	x		x	x			x	x	x			x	
(vi) Problem solving																		
To apply scientific and mathematical knowledge to a wide variety of problems	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
(vii) Information handling																		
Students should be able to correctly analyse and present scientific information and draw appropriate conclusions	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
(viii) Skills for lifelong learning																		
Students should be able to make and organise an ordered set of course and revision notes	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Students should be able to organise their time effectively	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Students should be able to record and reflect on their learning experiences								x							x			
Students should be able to assimilate and draw accurate conclusions from a wide variety of data and other resources	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Students should be able to effectively communicate scientific conclusions in both written and oral form	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x