

1. Programme title(s) and UCAS code(s):

BSc Medical Genetics C431

BSc Medical Biosciences (Genetics)*

* An award marked with an asterisk is only available as an exit award and is not available for students to register onto.

With optional Year in Industry or Year Abroad (in Europe, USA or Japan)

2. Awarding body or institution:

University of Leicester

a) Mode of study: Full timeb) Type of study: Campus-based

4. Registration periods:

The normal period of registration is three years (four years for degrees 'with a year in industry/abroad')

The maximum period of registration is five years (six years for degrees 'with a year in industry/abroad')

5. Typical entry requirements:

A-levels: typical offer AAB/ABB, normally including at least two relevant science subjects from Biology (preferred), Chemistry, Physics or Maths.

EPQ with A-levels: typical offer BBB + EPQ at grade B. A-level subjects to include two relevant science subjects from Biology (preferred), Chemistry, Physics or Maths. General Studies not accepted.

GCSE: At least Grade C/4 in both English Language and Maths (if not held at A-level)

Access to HE Diploma: Pass relevant diploma with 45 credits at level three, with distinctions in some subjects.

International Baccalaureate: Pass Diploma with 32/30 points, including at least two relevant science subjects at Grade 6 at higher level.

BTEC Nationals: Pass relevant Diploma with DDD plus five GCSEs at B or above including two relevant sciences.

6. Accreditation of Prior Learning:

Direct 2nd year entry is considered subject to completion of a level 4 programme of comparable content to those studies in year 1 of this programme, passing all modules and with a year mark of at least 65%.

7. Programme aims:

The programme aims to provide:

• a flexible teaching and learning programme of high quality that is informed by an active research environment in which students develop their own interests

• a stimulating and supportive working environment;

• an education that will enable graduates to follow a variety of careers including higher degrees and research;

and to enable students to:

• have a broad appreciation of genetics and related disciplines with an emphasis on human health and disease, and advanced knowledge of one or more areas including appreciation of aspects of the underpinning research;

• develop a range of skills including practical and transferable skills;

• gain experience, within the 4 year Industry/abroad options, by working in an external research laboratory or an American, Japanese or another European University.

8. Reference points used to inform the programme specification:

- QAA Benchmarking Statement
- University of Leicester Learning and Teaching Strategy 2016-2020
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual)

9. Programme Outcomes:

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?	
	cipline specific knowledge and co	mnetencies	
	(i) Mastery of an appropriate body of knowledge		
Demonstrate an	Lectures, tutorials, seminars,	Examination, coursework (e.g.	
awareness of main	practical classes, computer	practical reports, written	
principles of biological	classes, discussions, research	reports, data analysis, oral	
sciences, biomedical	projects, group work, directed	presentations, group reports,	
sciences and related	reading, resource-based	video production, poster	
disciplines and explain	learning, and private study.	production, dissertation)	
core concepts of their			
chosen discipline.			
Describe current areas of			
advance in their chosen			
specialisation(s) within			
medical genetics.			
	ling and application of key conce		
Describe and apply safely	Lectures, tutorials, seminars,	Examination and coursework	
appropriate experimental	practical classes, computer		
procedures in medical	classes, discussions, research		
genetics and associated	projects, group work, directed		
biological sciences	reading, resource-based		
disciplines.	learning, and private study.		
Apply a scientific approach			
to the solution of			
problems in medical			
genetics and appreciate			
the rationale of			
experimental design.			
Explain core concepts of			
their chosen discipline.			
	(iii) Critical analysis of key issu	es	
Demonstrate a capacity	Lectures, tutorials, seminars,	Examination and coursework	
for critical scientific	practical classes, computer		
analysis of issues in	classes, discussions, research		
context of medical	projects, group work, directed		
genetics and associated	reading, resource-based		
biological sciences	learning, and private study.		
disciplines			
(iv) (lear and concise presentation of	material	
Communicate orally and in	Lectures, tutorials, seminars,	Examination and coursework	
writing concepts and	practical classes, computer		
arguments in medical	classes, discussions, research		
genetics and associated	projects, group work, directed		
biological sciences	reading, resource-based		
disciplines	learning, and private study.		

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?	
(v) Critical appraisal of evidence with appropriate insight			
Demonstrate the capacity to analyse and criticise evidence from both experimental procedures and the literature.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, and private study.	Examination and coursework	
(vi	Other discipline specific compe	tencies	
In the year in industry/abroad programmes, demonstrate the capacity to work in an industrial or other research laboratory or study in another European, American or Japanese University.	Laboratory work, research project	Research report, practical reports.	
	(b) Transferable skills		
	(i) Oral communication		
Communicate orally, with clarity and coherence, concepts and arguments in medical genetics and associated biological sciences disciplines	Tutorials, seminars, practical classes, computer classes, discussions, research projects, group work.	Oral presentations, group reports, tutorials.	
	(ii) Written communication		
Communicate in writing, with clarity and coherence, concepts and arguments in Medical Genetics and associated Biological Sciences disciplines	Tutorials, seminars, practical classes, computer classes, discussions, research projects, group work.	Examination and coursework	
(iii) Information technology			
Demonstrate the effective use of IT for accessing databases and scientific literature; manipulating, processing and presenting data; presenting written assignments.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, and private study.	Examination and coursework	

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
	(iv) Numeracy	
Understand and manipulate numerical data, solve problems using a variety of methods and apply numerical and statistical techniques to data analysis.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, and private study.	Examination and coursework
	(v) Team working	
Demonstrate the ability to work as part of a group	Tutorials, group work, research projects.	Group reports, use of class data to generate practical reports
	(vi) Problem solving	
Apply a scientific approach to the solution of problems in the context of medical genetics and appreciate the rationale of experimental design.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, and private study.	Examination and coursework
	(vii) Information handling	
Demonstrate the capacity to access a variety of resource materials and to analyse evidence from both experimental procedures and the literature.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, and private study.	Examination and coursework
	(viii) Skills for lifelong learnin	-
Demonstrate the acquisition of the skills and attributes necessary for lifelong learning, including: intellectual independence, effective time management, the ability to work as part of a team, the use of IT and the capacity to access and utilise a variety of resource materials.	Lectures, tutorials, seminars, practical classes, computer classes, discussions, research projects, group work, directed reading, resource-based learning, private study, career development programme.	Examination, coursework, personal development planning.

10. Progression points:

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course.

The programme follows the standard scheme of progression set out in Senate Regulation 5 with the following additional requirements.

The Board of Examiners reserves the right to determine the progression of students who carry failed credits but have the right to a further resit: where these credits are in modules that are pre-requisite for subsequent modules or where the student has a low overall level of attainment, the Board can require the student to resit the failed modules without residence rather than proceed to the next year carrying failed modules to be resat alongside the current modules.

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

11. Scheme of Assessment

This programme follows the standard scheme of undergraduate award and classification set out in <u>Senate Regulations</u> – see the version of *Senate Regulation 5 governing undergraduate programmes* relevant to the year of entry - with the following approved exception:

To gain the Royal Society of Biology accredited degree of BSc Medical Genetics students must pass the project module/s (BS3101/2, BS3201, BS3301/3302) with a mark of 40.00% or higher. Students who meet all other progression and awarding regulations but fail to meet this accreditation requirement may be awarded a non-accredited degree in Medical Biosciences (Genetics).

12. Special features:

In year 1, students receive a broad education in core bioscience disciplines with a focus on genetics, along with specific teaching in medical biosciences and key skills. In years 2 and 3, the core programme, including Medical Genetics modules specific to them, is supplemented with options from the Biological Sciences programme. Opportunities are available to take placements within related industries, or to study in other European, American or Japanese universities.

The School has a strong reputation for research and the range of staff expertise enables provision of research-led programmes that offer breadth and depth.

13. Indications of programme quality

External examiner evaluations.

14. External Examiner(s) reports

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found at <u>exampapers@Leicester</u> [log-in required]

Appendix 1: Programme structure (programme regulations)

Appendix 2: Module specifications

Appendix 3: Skills matrix

Appendix 1: Programme structure (programme regulations)

BSc Medical Genetics C431

With optional Year in Industry or Year Abroad (in Europe, USA or Japan)

BSc Medical (Genetics)

Year 1

Semester 1	
BS1030	The Molecules of Life – An Introduction to Biochemistry and Molecular Biology (30)
BS1040	The Cell - An Introduction to Microbiology & Cell Biology (30)
Semester 2	
BS1050	From Individuals to Populations - An Introduction to Genetics (15)
BS1060	Multicellular Organisation - An Introduction to Physiology, Pharmacology and Neuroscience (30)
MB1080	An Introduction to Medical Bioscience (15)

Year 2

Semester 1

Core module:

BS2000	Research Topic (15)
--------	---------------------

MB2051 Current Issues in Medical Genetics (15)

For semester 1, make the credits add up to 60 by choosing from the modules listed below: ¹

BS2009	Genomes (15)
BS2013	Physiology and Pharmacology (15)
BS2015	Physiology of Excitable Cells (15)
BS2030	Principles of Microbiology (15)
BS2092	Molecular and Cell Biology (15)
MB2020	Medical Microbiology (15)

Semester total: 60 credits

For semester 2, make the credits add up to 60 by choosing from the modules listed below: ¹

BS2004	Contemporary Techniques in Biological Data Analysis (15)
BS2014	Exercise Physiology and Pharmacology (15)
BS2026	Genes, Development & Inheritance (15)
BS2040	Bioinformatics (15)
BS2032	Immunology and Eukaryotic Microbiology (15)
BS2033	Immunology and Eukaryotic Microbiology (with Science Enterprise Trip) (15)
BS2066	Behavioural Neurobiology (15)
BS2077	Neurobiology & Animal Behaviour (15)
BS2091	Biochemistry of Nucleic Acids (15)
BS2093	Protein Control in Cellular Regulation (15)

Semester total: 60 credits

With a Year in Industry (option)

Core module:

BS3400 Year in Industry Research Placement (0) (Year-long)

Year 3

Semester 1

Core modules

Research Project: 30/45 credits.

Choose ONE from the following five options:

i)	BS3101	Experimental Research Project A (15) and
	BS3102	Experimental Research Project B (30) (Year-long module)
	OR	

ii)	BS3201	Analytical Research Project (30)
	OR	
iii)	BS3301	Education Research Project A (15) and
	BS3302	Education Research Project B (30) (Year-long module)

Plus core modules

- BS3031 Human Genetics (15)
- BS3000 Evolutionary Genetics (15)

Semester total: 60 credits

Semester 2

Core modules:

MB3050	Medical Genetics (15)
--------	-----------------------

BS3011 Microbial Pathogenesis and Genomics (15)

For semester 2, make the credits add up to 60 by choosing from the modules listed below: ¹

BS3003	Cancer Cell & Molecular Biology (15)
BS3013	Human and Environmental Microbiology (15)
BS3016	Neuroscience Futures (15)
BS3033	Physiology, Pharmacology and Behaviour (15)
BS3056	Cellular Physiology of the Cardiovascular System (15)
NT3200	Sustainability Enterprise Partnership Project (15)

Semester total: 60 credits

¹ Module selection subject to timetable restrictions.