

Programme Specification (Undergraduate)

For students entering in 2019/20

Date amended: January 2018

1. Programme Title(s) and UCAS code(s):

MGeol Geology F601 MGeol Geology with a Year Abroad * MGeol Geology with a Year in Industry *

* Selected on course

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus-based

4. Registration periods:

The normal period of registration is four years (five years for Year in Industry)

The maximum period of registration is six years (seven years for Year in Industry)

5. Typical entry requirements:

A-level: AAB including at least two from: Biology, Chemistry, Computer Science, Environmental Science, Geography, Geology, Maths or Physics.

International Baccalaureate: Pass diploma with 34 points including some science based subjects at higher level.

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to:

- 1. provide students with a breadth of knowledge of Geology, and exposure to areas of research at the cutting edge of the Earth Sciences;
- 2. provide students with a thorough understanding of the theoretical and practical applications of Geology in the study of the Earth, and environmental and societal issues;
- 3. equip students with transferable and subject-specific skills necessary for a career in the Earth Sciences, other science based industries, education, and for training at management levels in other professions;
- 4. promote the development of ICT and written, oral and presentation skills appropriate for a science graduate at the MGeol level;
- 5. stimulate students to develop a wide range of independent and team skills;
- ensure that students benefit from an extensive programme of work in the field, developing fundamental geological knowledge through observation and critical analysis as well as developing personal and character skills;

- 7. provide students, via the curriculum and research expertise of staff, with a first training in research and research techniques appropriate for further postgraduate study or a research position in industry;
- 8. provide students with the environment in which to develop their interest in Geology;
- 9. enthuse and motivate all students to achieve their full potential in their degree course.
- 10. provide breadth and depth, via advanced M-level modules, in the subject area of Geology.
- 11. provide students with a training in, and appreciation of, research methods in Geology.

Additional aims and objectives for Year Abroad degree

The Year Abroad will provide students with the opportunity to spend their third year of academic study at the University of Arizona, USA or the University of Canterbury, New Zealand.

In addition, for the 'with Industry' variants

• To provide experience of applications of geology and other professional skills in Industry and to reinforce knowledge through their use in different environments

8. Reference points used to inform the programme specification:

QAA Benchmarking Statement for <u>Earth sciences</u>, <u>environmental sciences</u> and <u>environmental studies</u> (2014)

Degree programmes broadly concerned with earth sciences

- 2.4 It is anticipated that all graduates have appropriate knowledge of the main aspects of the Earth sciences, as listed:
- A holistic view of the present and past interactions between components of the Earth system, including the effects of extra-terrestrial influences on these interactions.
- The cycling of matter and the flows of energy into, between and within the solid Earth, the Earth's surface, the hydrosphere, the atmosphere and the biosphere.
- The study of the biological, chemical and physical processes that underpin our understanding of the structure, materials and processes relevant to the Earth and planetary bodies.
- The central paradigms in the Earth sciences: uniformitarianism (the present is the key to the past); the extent of geological time; evolution (the history of life on Earth); and plate tectonics
- Geological time, including the principles of stratigraphy, the stratigraphic column, the methods of geochronology, the rates of Earth processes, major events in Earth history, the evolution of life as revealed by the fossil record, the Quaternary and Anthropocene.
- Collection and analysis of Earth science data in the field, and the appropriate presentation, manipulation and extrapolation of these sometimes incomplete data in both two and threedimensions, including the generation of geological maps and cross sections.
- The study of structures, materials and processes that includes an appreciation of temporal and spatial variations at appropriate scales.
- The study of the structure, the composition and the materials of the solid Earth (core, mantle, crust, asthenosphere, lithosphere and so on), the hydrosphere, the atmosphere, the cryosphere and the biosphere, and the processes operating within and between them.
- An understanding of other planetary bodies.
- Earth science terminology, nomenclature and classification of rocks, minerals, fossils, and geological structures.
- The identification of rocks, minerals, fossils, and geological structures.
- Surveying and measurement both in the field and laboratory, and using quantitative and instrumental techniques.
- An awareness that the understanding and knowledge gained from the subject and its application has to be considered within a wider socio-economic and environmental context.
- 2.5 Typical programme elements might include: engineering geology; geochemistry; geological mapping; geomorphology; geophysics; geographic information systems and remote sensing

- applications; hydrogeology; igneous and metamorphic petrology, local and global tectonics; mineralogy; mineral deposits; natural hazards;; palaeobiology; palaeoclimatology; palaeontology; petroleum geology; petrology; sedimentology; stratigraphy; and structural geology.
- 2.6 Applications of the subject areas might include the exploration, development and remediation/storage of Earth resources (eg hydrocarbons, minerals, water, carbon dioxide sequestration, aggregates & radioactive waste), using past climates to understand climate change and the impact on the environment and society, civil engineering projects (e.g. land restoration, site investigations and waste disposal and understanding geohazards (e.g. flooding, earthquakes, volcanic eruptions and landslides).

In addition, the Programme Specifications were informed by:

- QAA Frameworks for Higher Education Qualifications in England Wales and Northern Ireland QAA Benchmarking Statement
- PDR report (November 2013)
- University Learning Strategy
- University Employability Strategy
- University of Leicester Academic Audit Evaluation
- NSS
- First Destination Survey
- External Examiner's Reports
- Accreditation by the Geological Society of London
 <a href="http://www.geolsoc.org.uk/en/Education%20and%20Careers/Universities/Degree%20Accreditation/First%20Degree%20Programmes%20in%20Geoscience/Currently%20Accredited%20First%20Degree%20Programmes
 **20Degree%20Programmes

9. Programme Outcomes:

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
· ·	cipline specific knowledge and co	-
(i) N	lastery of an appropriate body of kr	nowledge
Discuss and explain the general principles and techniques of Geology, including the structure, composition and evolution of the Earth and its interrelationships with the hydrosphere, cryosphere, biosphere, and atmosphere and the perturbations of these systems by extraterrestrial influences.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problemsolving classes.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Coursework; Module tests; Essays; Assessment of field reports and maps; Poster presentations; Field notebooks; Problem-based exercises

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?		
(ii) Understanding and application of key concepts and techniques				
Describe, identify and interpret a range of geological materials in the laboratory and field; select appropriate techniques to enable this; and explain geological relationships.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including shortanswer and essay examinations; Problem-based examinations; Field notebooks.		
Examine, record and interpret the geology (senso lato) of a region via a range of field-based techniques.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Independent field work.	Practical examination; Report and field notebook and map assessment		
Explain geological time, rates and fluxes, and the techniques required to determine them.	Lectures, Tutorials, Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problemsolving classes.	Written and practical examinations, including shortanswer and essay examinations; Problem-based examinations.		
Select geological knowledge and data for modeling purposes (for example, for evaluation of scientific hypotheses, for hazard mitigation, or for resource estimation).	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written and practical examinations, including short-answer and essay examinations; Problem-based examinations; field notebooks.		
Describe the importance of geological materials resources, their exploitation and associated environmental impact.	Lectures, practical classes, tutorials, field courses	Exam and group work.		
Demonstrate and apply knowledge of safety procedures in the field.	Field-based practical classes and demonstrations.	Demonstration and role play.		
Demonstrate and apply knowledge of safety procedures in the laboratory.	Supervised classes and training with appropriate staff and supervisors.	MGeol research project diary and report.		
Demonstrate a knowledge of a number of research techniques and procedures.	Supervised laboratory classes, discussion sessions with project supervisors.	MGeol Research project poster, report, project diary, associated oral presentation.		

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?			
	(iii) Critical analysis of key issues				
Identify theories paradigms, concepts and principles; apply scientific principles to evaluate current geological paradigms; and evaluate environmental and societal aspects of the Earth's resources.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including shortanswer and essay examinations; MGeol research project report and project diary; Problem-based examinations; Coursework; Module tests; Essays; Tutorial discussions.			
(iv)	Clear and concise presentation of r	naterial			
Synthesise and interpret results, in order to effectively communicate (via written, oral, graphical means) data and ideas to a range of audiences.	Tutorials; Group seminars; Practical classes	Essays, essay-based examinations; independent projects; MGeol research project report, poster and project diary; contributions to tutorial discussions; poster displays; reports; group talks.			
(v) Critic	al appraisal of evidence with appro	priate insight			
Debate geological ideas. Construct and test scientific hypotheses and analyse using geological data.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Directed reading; Problem-solving classes.	Essays; essay- and practical examinations; reports; presentations; MGeol research project report and project diary.			
(1)	ı vi) Other discipline specific compete	encies			
Conduct a range of field- based studies (e.g. geological mapping and recording of field observations).	Field courses, practical classes and demonstrations.	Report, field notebook, and geological map. Practical examinations.			
Develop responsibility for the immediate working environment.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.			
Describe risks for hazard assessment for field-based work. Identify safe practice.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.			
Explain the geological structure and history of an area.	Field classes, lectures, practical classes.	Independent field project report.			

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
	(b) Transferable skills (i) Oral communication	
Present geological data and theories using appropriate methods.	Tutorials; Group seminars / discussions; field-based presentations.	Oral presentations in tutorials and classes; MGeol research project oral presentation; MGeol poster discussions
Discuss and review geological topics in tutorial and other group discussions, and respond effectively to questioning.	Tutorials; Group seminars/discussions; field-based presentations.	Oral presentations in tutorials and classes
Effectively lead and direct discussion of controversial subject-specific topics.	Discussion groups within module.	Oral presentation in classes and assessment of debating skills and contributions.
	(ii) Written communication	
Communicate effectively and appropriately in a variety of written formats including essays, reports, projects, CVs and posters	Tutorials, demonstrations and guidance notes	Assessed essays, reports, poster displays, and examinations
Draw and describe geological features, specimens and thin sections.	Practical classes, demonstrations, fieldwork, independent project work	Field notebooks; assessed practical folders; assessed reports.
	(iii) Information technology	
Use spreadsheets or other software to enter, manipulate and display numerical data.	Subject-embedded exercises. Tutorials.	Assessed report; practical assignments.
Use appropriate software packages to prepare written reports, essays, posters and presentations (e.g. Word, PowerPoint)	Report-writing for tutorials; subject-embedded exercises; presentation to tutorial groups and classes.	Assessed report; tutorial and practical assignments; independent work assignments; MGeol Research project report, poster and oral presentation.
Critically review information from electronic sources.	Tutorial and class supported information retrieval for projects, essays and reports.	Assessed report; tutorial; practical assignments and independent work assignments (including MGeol research project report).

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
	(iv) Numeracy	
Select appropriate	Introduced in the first year	Mid-semester progress tests and
numerical, statistical and	within practical classes and	as components within subject
graphical methods to explain	tutorials.	specific modules throughout the
and interpret geological		three years of study; feedback on
concepts.		practical class assignments.
		MGeol research project report
		and project diary
	(v) Team working	
Organize and work	Tutorials, seminars, practical	Tutorial-based assessments;
effectively within a team,	classes, project work, and field-	assessed practical work, and
and evaluate performance of	based discussions.	team fieldwork.
self and of team.		
Identify self and team goals	As above.	As above.
and responsibilities for team	As above.	AS above.
working.		
	(vi) Problem solving	
Solve numerical, spatial,	Lectures, tutorials, practical and	Assessment of field notebooks,
temporal and geometrical	field classes, group work,	practical class work, project work
problems.	projects.	and reports.
problems.	projects.	and reports.
Solve problems with	Field and practical classes,	Dissertation; independent field
incomplete or contradictory	independent research	project and poster;MGeol
information.	supervisory sessions.	research project report and
		poster.
	(vii) Information handling	
Effectively search for, gather	Lectures, tutorials, practicals,	Tutorial assignments, project
and utilise information	study skills within tutorials, field	work.
relevant to geological	and lab-based projects. MGeol	
problem solving.	research project.	
	(viii) Skills for lifelong learning	
Demonstrate intellectual	Independent project work,	Assessed independent work.
independence via	including field-based project	Coursework within modules;
independent research.	work; MGeol research project;	MGeol project report, poster, oral
	dissertation.	presentations, dissertation.
Develop and implement a	All of the above, and particularly	Assessed independent work
personal plan of work to	independent project work.	including MGeol research project;
meet a deadline.		field project, coursework within
		modules.
Identify targets for personal,	All of the above, and particularly	
career and academic	independent project work and in	Assessed independent work.
development	tutorials	Successful Placement for Year in
	Project planning classes	Industry students
Plan and execute an	Project planning classes,	Assessed MGeol research project
independent research project	supervisory sessions, independent	
	research project.	

10. Progression points:

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

In order for a student to continue on an M.Geol course, they will normally be expected to achieve an average mark of at least 60% at the end of the second year. Students whose overall average is less than 60% but more than 55% will be considered individually; they normally are required to achieve a mark of at least 60% in at least 60 credits of second year modules. Students who do not achieve the standard required for M.Geol, including those who have an average 2nd year mark of less than 55%, will be transferred to the B.Sc. degree course.

For Year in Industry Variant:

Progression onto the Year in Industry placement preparation module will require a 1st year CWA of 50%. Students who undertake the placement preparation module, but do not obtain a placement or do not satisfactorily complete (attendance, participation and completion of set tasks) the placement year will be transferred to the standard degree programme

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> Regulation 5.

12. Special features:

Residential field courses
Group problem solving
Student centered learning – small-group tutorials
Field-based project
Department-based specialist careers advisors
Independent research project
'Hot Topics' student-led debating/seminar module
Access to state-of-the-art analytical facilities for research projects

Placements

Students undertake a year in industry between the second and third years of their programme. Progression onto the Year in Industry placement preparation module will require a 1st year CWA of 50%. Students who undertake the placement preparation module, but do not obtain a placement or do not satisfactorily complete (attendance, participation and completion of set tasks) the placement year will be transferred to the standard degree programme.

As a condition of the 'with Industry' programme, students are required to undertake preparatory training during the second year of their degree.

Students are responsible for securing their own placement but will receive support in this from the Career Development Service. .

Once in placement, students will need to register their University 'attendance' by logging on to a dedicated Blackboard site once a week. In the course of the placement the student will receive one or two visits from a member of staff. The second 'visit' can be in the form of a Skype call. Should a student secure an overseas placement both visits will typically be delivered via a Skype call.

While in placement, students will be required to complete an online log. The placement log requires students to undertake reflective activities which are marked on a pass/fail basis. This, together with

the final summative reflective report, constitutes the assessment for the placement year. Students have to submit the final report within one month of finishing the placement, and are allowed to resubmit once if required.

If a student fails to secure a placement or does not meet the academic progression requirements at the end of year 2, they will be transferred to the non-industry variant of their degree programme.

13. Indications of programme quality

Accreditation by the Geological Society of London
The research interests of the staff strongly inform the teaching programme

Quotes from recent External Examiners:

'The department is excellent and deserves its reputation as one of the leading centres of geoscience teaching/research in Europe.'

'These are high quality programmes delivered by an approachable and dedicated staff team. Further, your students really appreciate the Department and indicated that they have had a very enjoyable and satisfying learning experience. The field programme is comprehensive and to be commended.'

'The department operates under the highest academic standards. An excellent range of courses is offered and these are evidently taught with great enthusiasm and authority. Staff are at all times approachable and accessible and there is an enviably professional and friendly atmosphere in the department.'

'impressed with the diverse and stimulating set of projects offered to students'.

14. External Examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports can be found here.

Appendix 1: Programme structure (programme regulations)

MGeol GEOLOGY

FIRST YEAR MODULES		
Core Modules		Credits
Core ivioudies	YEAR LONG	Credits
GL1100	Tutorials	15
GL1100	The Rock Cycle: our dynamic earth	30
OLIIOI	The Rock Cycle. Our dynamic earth	30
	SEMESTER 1	
GL1102	Micro to Macro	15
GL1103	Palaeobiology and the Stratigraphic	15
	Record	
CLAACA	SEMESTER 2	45
GL1104	Natural Resources and the Environment	15
GL1105	Geological Maps and Structures	15
GL1103 GL1106	Introductory Field Course	15
GL1100	introductory Field Course	15
SECOND YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL2100	Geological Field Skills	30
	SEMESTER 1	
GL2103	Magmatic and Metamorphic	15
	Processes	
GL2105	Depositional Processes and	15
	Environments	
	SEMESTER 2	
GL2104	Interpreting Geological Maps and	15
G1210 .	Stratigraphy	
GL2101	Earth and Ocean Systems	15
GL2102	Structure and Tectonics	15
Optional Modules		Credits
(To choose 15 credits)		
	YEAR LONG	
GL2108	Principles of Geophysics	15
	C5145C75D 4	
CL2106	SEMESTER 1	15
GL2106	Introductory Mineral Deposits	15
GL2107	Major Events in the History of Life	15
THIRD YEAR MODULES		
Core Modules		Credits
	SEMESTER 1	
GL3100	Field Based Project	30
	SEMESTER 2	
GL3101	Dissertation	15
Optional Modules		Credits

(To choose 30 credits)	SEMESTER 1	
GL3102	Environmental Geoscience	15
GL3103	Petroleum Reservoir Petrophysics 15	
GL3104	Concepts in sedimentology and	15
	stratigraphy with applications to	
	reservoir geoscience	
GL3111 ^a	Diversity and Evolution of	15
	Vertebrates	
GL3112 ^b	Geophysical Data Analysis	15
(To choose 30 credits)	SEMESTER 2	
GL3105	Earth Science in Education	15
GL3106	Planetary Science	15
GL3107	Reflection Seismology	15
GL3108	Geological Application of	15
	Microfossils	
GL3109	Mineral Exploration and Evaluation	15
GL3110 ^c	Advanced Mineral Deposits	15
GY3434	Stable Isotopes in the Environment	15
(To choose 15 credits)	SEMESTER 2	
GL3116	Physical Volcanology – Tenerife	15
GL3117	Tectonics – NW Highlands	15
GL3113 ^c	Applied Geology Field Course -	15
	Cornwall	
GL3114 ^a	Basin Evolution and	15
	Palaeoenvironments Field Course -	
	Wales	
GL3115 ^b	Archaeological Geophysics Field	15
	Course	
FOURTH YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL4100	Hot Topics	15
GL4101	Research Project (Geology)	60
	SEMESTER 1	
Must choose either:		
GL4105	Overseas Field Course	15
GL4106	Urban Geology	15
Optional Modules		Credits
(To choose 30 credits)		
	SEMESTER 1	
GL4106 ^d	Urban Geology	15
GL4107 ^c	Ore Genesis	15
GL4108 ^a	Evolutionary Palaeobiology	15
GL4109 ^e	Global Seismology	15
GL4110	Igneous Petrogenesis	15
CV4471	Fundamentals of GIS	15
G14471	SEMESTER 2	
GY4471	JEIVIESTEIN Z	
GL4111	Methods and Modelling in	15

chosen as core, e – available if GL2108 or GL3106 taken

MGeol GEOLOGY WITH A YEAR IN INDUSTRY

FIRST VEAR MADDINES		1
FIRST YEAR MODULES		Cradite
Core Modules	YEAR LONG	Credits
GL1100	Tutorials	15
GL1100	The Rock Cycle: our dynamic earth	30
011101	THE ROCK CYCLE. Our dynamic curti-	30
	SEMESTER 1	
GL1102	Micro to Macro	15
GL1103	Palaeobiology and the Stratigraphic	15
	Record	
	SEMESTER 2	
GL1104	Natural Resources and the	15
GL1105	Environment Geological Maps and Structures	15
GL1105 GL1106	Introductory Field Course	15
GL1100	introductory Field Course	15
SECOND YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL2100	Geological Field Skills	30
	SEMESTER 1	
GL2103	Magmatic and Metamorphic	15
	Processes	
GL2105	Depositional Processes and	15
	Environments	
	SEMESTER 2	
GL2104	Interpreting Geological Maps and	15
02210 .	Stratigraphy	
GL2101	Earth and Ocean Systems	15
GL2102	Structure and Tectonics	15
Optional Modules		Credits
(To choose 15 credits)		
	YEAR LONG	
GL2108	Principles of Geophysics	15
	SEMESTER 1	
GL2106	Introductory Mineral Deposits	15
GL2107	Major Events in the History of Life	15
	major Events in the matory of the	
	YEAR LONG	
ADGL2200	Placement Preparation	0
	·	
THIRD YEAR MODULES		
Core Modules		Credits
	SEMESTER 1	
GL3100	Field Based Project	30
CL 24.04	SEMESTER 2	45
GL3101	Dissertation	15

Optional Modules		Credits
(To choose 30 credits)	SEMESTER 1	Cieuits
,		15
GL3102	Environmental Geoscience 15	
GL3103	Petroleum Reservoir Petrophysics	15
GL3104	Concepts in sedimentology and	15
	stratigraphy with applications to	
CI 21111	reservoir geoscience	15
GL3111 ^a	Diversity and Evolution of Vertebrates	15
GL3112 ^b	Geophysical Data Analysis	15
GL3112	Geophysical Data Allalysis	13
(To choose 30 credits)	SEMESTER 2	
GL3105	Earth Science in Education	15
		15
GL3106	Planetary Science	
GL3107	Reflection Seismology	15
GL3108	Geological Application of Microfossils	15
GL3109		15
GL3109 GL3110 ^c	Mineral Exploration and Evaluation	15
	Advanced Mineral Deposits	
GY3434	Stable Isotopes in the Environment	15
(To shoose 15 exadits)	SEMESTER 2	
(To choose 15 credits) GL3116		15
	Physical Volcanology – Tenerife	
GL3117	Tectonics – NW Highlands	15
GL3113 ^c	Applied Geology Field Course - Cornwall	15
GL3114 ^a	Basin Evolution and	15
	Palaeoenvironments Field Course -	
	Wales	
GL3115 ^b	Archaeological Geophysics Field	15
	Course	
FOURTH YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL4100	Hot Topics	15
GL4101	Research Project (Geology)	60
	SEMESTER 1	
Must choose either:		
GL4105	Overseas Field Course	15
GL4106	Urban Geology	15
Optional Modules		Credits
(To choose 30 credits)		
	SEMESTER 1	
GL4106 ^d	Urban Geology	15
GL4107 ^c	Ore Genesis	15
GL4108 ^a	Evolutionary Palaeobiology	15
GL4109 ^e	Global Seismology	15
GL4110	Igneous Petrogenesis	15
GY4471	Fundamentals of GIS	15
	SEMESTER 2	
GL4111	Methods and Modelling in	15
	Palaeoclimatology	
	•	1

a - available if GL2107 taken, b - available if GL2108 taken, c - available if GL2106 taken, d - available if GL2108 or GL3106 taken

THIRD YEAR

Students who gain an industry placement will be assessed as per the standard model for undergraduate placements in the College of Science and Engineering. The marks from this year will not be included in the final degree assessment.

MGeol GEOLOGY WITH A YEAR ABROAD

FIRST YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL1100	Tutorials	15
GL1101	The Rock Cycle: our dynamic earth	30
	·	
	SEMESTER 1	
GL1102	Micro to Macro	15
GL1103	Palaeobiology and the Stratigraphic Record	15
	SEMESTER 2	
GL1104	Natural Resources and the Environment	15
GL1105	Geological Maps and Structures	15
GL1106	Introductory Field Course	15
SECOND YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL2100	Geological Field Skills	30
	SEMESTER 1	
GL2103	Magmatic and Metamorphic Processes	15
GL2105	Depositional Processes and Environments	15
	CENTECTED 2	
GL2104	SEMESTER 2 Interpreting Geological Maps and	15
GL2104	Stratigraphy	13
GL2101	Earth and Ocean Systems	15
GL2102	Structure and Tectonics	15
Optional Modules		Credits
(To choose 15 credits)		
	YEAR LONG	
GL2108	Principles of Geophysics	15
	SEMESTER 1	
GI 2106		15
GL2106	Introductory Mineral Deposits	15
GL2107	Major Events in the History of Life	15

THIRD YEAR MODULES for students going to North America

Core Modules Credits

GL3056 INDEPENDENT FIELD-BASED PROJECT (YEAR ABROAD)

20

THIRD YEAR MODULES for students going to New Zealand

The third year will be spent at the University of Canterbury, Christchurch, New Zealand and modules taken there will substitute for 120 credits of normal third-year modules of the M.Geol. Geology at Leicester.

FOURTH YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL4100	Hot Topics	15
GL4102	Research Project (AEG)	60
	SEMESTER 1	
Must choose either:		
GL4105	Overseas Field Course	15
GL4106	Urban Geology	15
Optional Modules		Credits
(To choose 30 credits)		
	SEMESTER 1	
GL4106 ^d	Urban Geology	15
GL4107 ^c	Ore Genesis	15
GL4108 ^a	Evolutionary Palaeobiology	15
GL4109 ^e	Global Seismology	15
GL4110	Igneous Petrogenesis	15
GY4471	Fundamentals of GIS	15
	SEMESTER 2	
GL4111	Methods and Modelling in	15
	Palaeoclimatology	

a - available if GL2107 taken, b - available if GL2108 taken, c - available if GL2106 taken, d - available if GL4105 chosen as core, e - available if GL2108 or relevant module taken during year abroad

Appendix 2: Module specifications

See module specification database http://www2.le.ac.uk/offices/sas2/courses/documentation

Appendix 3: Skills matrix