

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

 Date created:
 25/11/2020
 Last amended:
 01/05/2025
 Version no.
 1

1. Programme title(s) and code(s):

BSc (Hons) Environmental Science F750

BSc (Hons) Environmental Science with Foundation Year

BSc (Hons) Environmental Science with a year Abroad

BSc (Hons) Environmental Science with a Year in Industry

Dip HE*

Cert HE*

Notes:

* An award marked with an asterisk is only available as an exit award and is not available for students to register onto.

HECOS Code

HECOS Code	%
100381	100 %

- a) UCAS Code (where required) F750
- 2. Awarding body or institution:

University of Leicester

3. a) Mode of study

Full-time

b) Type of study

Campus-based

4. Registration periods:

BSc (Hons) Environmental Science

The normal period of registration is three years (four years for BSc with a Year in Industry, or year abroad)

The maximum period of registration is five years (six years for BSc with a Year in Industry, or year abroad)

For Foundation Year Variant:

The normal period of registration is four years (five years for BSc with Foundation Year, with a Year in Industry, or year abroad)

The maximum period of registration is six years (seven years for BSc with Foundation Year, with a Year in Industry, or year abroad)

5. Typical entry requirements

ABB A level. Any three A levels usually required; Geography is not required. Two AS levels can be considered in place of one A level towards the total. General Studies accepted. BBB + EPQ at grade B, two AS-levels considered in place of one A-level. General Studies accepted. Key Skills also welcome. International Baccalaureate: Pass Diploma with 32 points

For the aims, learning outcomes and application criteria for the GCSA Year Abroad please see https://le.ac.uk/study/undergraduates/courses/abroad

6. Accreditation of Prior Learning

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims

The BSc in Environmental Science aims to:

- provide a scientific understanding of the operation of the Earth System and its various component "spheres"
- provide a thorough understanding of environmental change, cycles, patterns and processes at local to global scales;
- provide an understanding and critical appreciation of the interactions between human societies and the environment
- provide an intellectually challenging and stimulating curriculum that draws on the research expertise across the university, enabling students to develop in depth knowledge and understanding of specialized areas of environmental science;
- develop students' abilities to explore varied analytical methods and concepts to analyze and explain environmental systems, problems and questions;
- develop students' abilities to use and apply appropriate field, statistical and survey methods;
- provide a learning experience in which students can develop and demonstrate a range of transferable skills necessary for effective independent learning and critical thinking;
- provide opportunities to develop employability skills, and career and personal development planning, including opportunities for careers in professional environmental fields, industry and commerce.

For Foundation Year variant, see STEM Foundation Year programme specification from year of entry.

8. Reference points used to inform the programme specification

- QAA Benchmarking Statement for Geography 2014
- Framework for Higher Education Qualifications (FHEQ)
- UK Quality Code for Higher Education
- University Education Strategy
- <u>University Assessment Strategy</u> [log in required]
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual)
- United Nations Education for Sustainable Development Goals
- Student Destinations Data

9. Programme Outcomes

Unless otherwise stated, programme outcomes apply to all awards specified in 1. Programme title(s).

a) Discipline specific knowledge and competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate mastery of an appropriate body of knowledge concerning the nature and functioning of the Earth System and the key "spheres" within it (e.g. Biosphere, Geosphere).	Lectures, tutorials, seminars, computer-aided learning and computer-based practicals, laboratory based practicals, directed readings, independent research, student centered learning, presentations and discussion.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem- based exercises, review papers, bibliographies
Demonstrate mastery of an appropriate body of knowledge concerning patterns and processes of environmental change.	Lectures, tutorials, seminars, computer-aided learning and computer-based practicals, laboratory based practicals, directed readings, independent research, student centered learning, presentations and discussion.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem- based exercises, field & lab notebooks, review papers, bibliographies
Demonstrate mastery of an appropriate body of knowledge on how societal and environmental processes operate, and interact, over a wide range of spatial- temporal scales.	Lectures, tutorials, seminars, directed readings, independent research, student centered learning, presentations and discussion.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, review papers, bibliographies

i) Mastery of an appropriate body of knowledge

ii) Understanding and application of key concepts and techniques

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate knowledge of the different approaches to scientific explanation and interpretation.	Lectures, tutorials, seminars, directed reading, independent research, computer practicals, group learning.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.
Demonstrate a competence in the varied methods of analyzing and interpreting the environment.	Tutorials, seminars, directed reading, independent research, computer practicals, laboratory based practicals, group learning.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.
Recognize the ways in which physical & environmental processes lead to the distinctiveness of places.	Lectures, tutorials, seminars, directed reading, independent research, computer practicals, group learning.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.

iii) Critical analysis of key issues

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Critical evaluation of the theoretical, philosophical and methodological perspectives employed in environmental science	Lectures, tutorials, seminars, directed reading, independent research, computer practicals, group learning.	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.
Recognition of the inherently inter- disciplinary nature of environmental science and the role of environmental science plays in managing Earth processes, ecosystems and contemporary societies.	Tutorials, seminars, directed reading, independent research, computer practicals, group learning	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.
Awareness of advantages and problems of varied methods of environmental analysis.	Tutorials, seminars, directed reading, independent research, computer practicals, group learning	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Critical reflection on research observations presented in the literature and own empirical research.	Tutorials, seminars, directed reading, independent research, computer practicals, group learning	Essays, essay-based examinations, dissertations, presentations, contributions to discussion, practical reports, objective testing, problem based exercises.

iv) Clear and concise presentation of material

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use a variety of qualitative and quantitative methods to present information to a range of different audiences.	Tutorials, seminars, independent research, computer practicals, group learning.	Writing tasks, design, mapping and visualization tasks (e.g. posters, magazines), contributions to discussion, dissertations (presentation of independent research), presentation skills.

v) Critical appraisal of evidence with appropriate insight
--

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Formulate appropriate questions for scientific inquiry, and gather and utilize suitable evidence in addressing such questions.	Tutorials, seminars, directed reading, independent research, computer practicals, group learning.	Writing tasks, design, mapping and visualization tasks, contributions to discussion, dissertations (presentation of independent research), presentation skills.
Read, analyze and reflect critically on scientific texts and other source materials.	Tutorials, seminars, directed reading, independent research, computer practicals, group learning.	Writing tasks, design, mapping and visualization tasks, contributions to discussion, dissertations (presentation of independent research), presentation skills.

vi) Other discipline specific competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Conduct an independent piece of environmental research, from problem formulation to evidence collection, result presentation and discussion	Dissertations; group and independent research. Field courses, computer practicals, laboratory practicals, lectures.	Dissertations; group and independent research.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use specialized techniques and approaches for the collection, interpretation and explanation of environmental processes.	Dissertations; group and independent research. Field courses, computer practicals, laboratory practicals, lectures.	Field reports, group and independent research; dissertations; tutorials; objective testing; laboratory reports.
Use specialized techniques and approaches for the presentation of environmental data.	Dissertations; group and independent research. Field courses, computer practicals, laboratory practicals, lectures.	Field reports, group and independent research; dissertations; design, mapping and visualization tasks.

b) Transferable skills

i) Oral communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate clear, fluent and coherent oral expression.	Seminars, tutorials, field courses.	Seminar and tutorial presentations, contributions to discussions.
Participate effectively in group discussions of environmental issues	Seminars, tutorials, field courses.	Seminar and tutorial presentations, contributions to discussions.

ii) Written communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Present coherent and	Seminars, tutorials, group	Essays, essay-based
fluent arguments in a variety of written formats.	working.	examinations, dissertations, practical reports.

iii) Information technology

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use information technology in general, and geographical information systems in particular to explore and analyze environmental /geographical data or information.	Induction programme, computer practical classes and independent research.	Computer-based exercises. Independent research, dissertation, problem solving exercises, essays, web pages, posters, group reports.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use IT to effectively support studies, including the use of IT for bibliographic research, and written and visual presentation of information	Computer practical classes, group and independent research.	Computer-based exercises. Independent research, dissertation, problem solving exercises, essays, web pages, posters, group reports.

iv) Numeracy

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use a variety of descriptive and inferential statistical methods and graphic techniques to explore, analyses and visualize environmental data.	Lectures; computer practical classes, independent research	Computer-based exercises. Independent research, dissertation

v) Team working

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Work effectively and collaboratively in teams to collectively explore key concepts and tasks.	Tutorials, seminars, team problem solving, field courses.	Seminar and tutorial working, problem solving exercises.

vi) Problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Explore key problem spaces with contemporary discourses and approaches	Tutorials, seminars, team problem solving, field courses.	Computer-based exercises. Independent research, dissertation, problem solving exercises.

vii) Information handling

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Gather, retrieve and manipulate evidence and information in support of scientific arguments	Tutorials, seminars, directed reading, independent research, computer practicals, team problem solving, field courses.	Essays, essay-based examinations, dissertations, practical reports., seminar and tutorial working, problem solving exercises, team problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Analyze information from a variety of sources to develop and construct scientific arguments and interpretations.	Tutorials, seminars, directed reading, independent research, computer practicals, team problem solving, field courses.	Essays, essay-based examinations, dissertations, practical reports., seminar and tutorial working, problem solving exercises, team problem solving

viii) Skills for lifelong learning

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate intellectual development and independence through the setting of research tasks and the solving of problems.	Independent research and seminar presentations	Independent research and seminar presentations
Reflect upon own learning and use personal development planning to plan personal, academic and career development.	Independent research and seminar presentations	Discussions with personal and other tutors; Curriculum vitae writing. Employability & career development module.
Manage time effectively to meet targets and deadlines	Independent research and seminar presentations	dissertations, seminars, essays, independent research.

Year in Industry Students (only)

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated
On Placement		
 Apply the theoretical and practical aspects of the material studied at the University and demonstrate the personal and professional skills necessary for your role within the organisation. 	Project supervision, independent research	Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome. Assessed by a Placement Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis.

		Formative feedback during a Placement Visit (in person or via Skype) from Placement Provider and Placement Tutor regarding reflection on skills development, areas of strength and weakness and contribution to the workplace.
2. Compose a Professional Development Plan considering your strengths, development areas and motivations for your next step	Project supervision, independent research	Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome. Assessed by a Placement
		Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis.
		Formative feedback during a Placement Visit (in person or via Skype) from Placement Provider and Placement Tutor regarding reflection on skills development, areas of strength and weakness and contribution to the workplace.
 Modify your CV to include the skills and experience you have gained through your significant experience gained in the past 12 months. 	Project supervision, independent research	Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome.
		Assessed by a Placement Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis.

P S	Formative feedback during a Placement Visit (in person or via Skype) from Placement Provider and Placement Tutor regarding
d	reflection on skills development, areas of strength and weakness and contribution to the workplace.

10. Progression points

This programme follows the standard Scheme of Progression set out in <u>Senate Regulations</u> – see the version of Senate Regulation 5 governing undergraduate programmes relevant to the year of entry.

The following additional progression requirements for this programme have been approved:

• Students must pass the dissertation proposal component of **GY2437** in order to be allowed to progress to Year 3. A resit will be offered in July. Failure after this attempt will result in termination. Proceed and resit will not be permitted for the dissertation proposal.

• For Foundation Year variant:

For progression from the Foundation Year, see the STEM Foundation Year programme specification for the year of entry.

In cases where a student has failed to meet a requirement to progress <u>they</u> will be required to withdraw from the course.

Progression onto a year in industry

For the progression criteria to the year in industry, please see the Year in Industry programme specification. In cases where a student has failed to meet a requirement to progress they will be required to withdraw from the course

a) Course transfers

Students can transfer **from**: BSc Geography, BSC Physical Geography and Geology, BSc Geology, MGeol Geology

Students can transfer to: BSc geography, BSc Physical Geography and Geology

11. Criteria for award and classification

This programme follows the standard scheme of undergraduate award and classification set out in <u>Senate Regulations</u> – see the version of *Senate Regulation 5 governing undergraduate programmes* relevant to the year of entry.

12. Special features

Study in the field is an integral part of the curriculum and the School of Geography, Geology and the Environment runs field courses to a number of destinations around the world. Staff are engaged in internationally recognized research across numerous aspects of Earth Science, Geography and Biological Science. For Year in Industry Variant:

It is the student's responsibility to secure a year in industry role. Employer led activities provide a platform for students to engage with organisations who are recruiting students for year in industry roles.

When a Placement Student starts a year in industry, they will be required to complete health and safety documents and confirm they have completed a formal induction process no later than the 2nd week of placement. A Placement Student on the Year in Industry variant will also gain from being able to:

- 1. Apply the theoretical and practical aspects of the material studied at the University and demonstrate the personal and professional skills necessary for your role within the organisation.
- 2. Compose a Professional Development Plan considering your strengths, development areas and motivations for your next step
- 3. Modify your CV to include the skills and experience you have gained through your significant experience gained in the past 12 months

12a. Research-inspired Education

Students on this programme will advance through the four quadrants of the University of Leicester Research-inspired Education Framework as follows:

RiE Quadrant	Narrative
	This programme offers a comprehensive blend of theoretical and practical knowledge in key topics such as climate change, conservation, sustainable development, water quality, and natural resource management. You'll develop critical thinking and problem-solving skills by tackling global environmental challenges and devising scientifically grounded solutions for a sustainable future. With a broad foundation and in-depth focus, the skills and knowledge you gain will open doors to a variety of career pathways globally.
Research- briefed Bringing staff research content into the curriculum.	• Research briefed - Immerse yourself in challenging and inspiring learning experiences informed by cutting-edge research. Our programme draws on the expertise of the Contemporary Environments and Evolution and Past Environments research groups in GGE, as well as leading experts in Ecological Science at the University of Leicester. Our staff bring their research straight into the classroom, making learning exciting and relevant.
Research- based Framed enquiry for exploring existing knowledge.	• Research based - Engage in classroom practicals, and assessments rooted in real-world problems and data. For example, you'll analyse big challenge questions using digital mapping technologies and approach solute concentrations in rivers and greening and browning in West Africa through problem-based learning. You'll develop skills in data management, statistical methods, and modelling.
Research- oriented Students critique published	• Research oriented – Develop your ability to critically appraise your own data management, analyses, and findings through laboratory and computer classes. You'll receive guidance on evaluating published research and engaging critically with literature. This training will equip you with the skills needed to assess and

research content and process.	improve your work continually. Additionally, you'll practice writing assignments in the style of research papers and popular science articles, enhancing your ability to communicate complex ideas effectively
Research- apprenticed Experiencing the research process and methods; building new knowledge.	 Research apprenticed – Gain comprehensive training in report writing, group work, presentation skills, and research techniques, including library skills and reference management software. You'll work individually and in groups to present your findings from data management and critical appraisals, especially during field course research projects. This experience is complemented by a research design module, providing essential research training. Additionally, all students will push the boundaries of knowledge in their final dissertation project based on their independent research, supported by an expert supervisor. This programme builds the research expertise and confidence needed to excel in the field of Environmental Science and make a meaningful impact on our world.

As part of studying at a research-intensive university, students on this programme have the following extra or co-curricular opportunities available to them to gain exposure to research culture:

The School of Geography., Geology and Environment has a full programme of weekly seminars by outside speakers, to which Undergraduate students are encouraged to attend through promotion in the SGGE newsletter and through lecture shout-outs. Staff also pen their latest research findings within the SGGE newsletter, and pin their latest journal papers to their relevant VLE module sites in a virtual noticeboard.

The Centre for Palaeobiology offers research bursaries, which are open to all students in the School of Geography, Geology & Environment (GGE). These normally support multiple students to join a GGE research project.

Teaching on this programme will be research-informed (it draws consciously on systematic inquiry into the teaching and learning process itself) in the following way:

The School supports all staff involved in teaching to gain an accredited Higher Education teaching qualification, in which they demonstrate their use of teaching theory to support their own practice and reflect on their current teaching and continuing professional development.

Academic staff meet twice per year to discuss the latest developments in teaching and learning, for example most recently in regard to generative artificial intelligence. Selected staff conduct horizon scanning of the latest journal papers in Journal of Geography in Higher Education, Journal of Geoscience Education and The Journal of Environmental Education to bring ideas at the forefront of innovation to their peers.

13. Indications of programme quality

External Examiner's reports have repeatedly praised the breadth of the education and the dedication of the staff.

14. External Examiner(s) reports

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found at <u>exampapers@Leicester</u> [log-in required]

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

 Date created:
 25/11/2020
 Last amended:
 01/05/2025
 Version no.
 1

Appendix 1: Programme structure (programme regulations)

The University regularly reviews its programmes and modules to ensure that they reflect the current status of the discipline and offer the best learning experience to students. On occasion, it may be necessary to alter particular aspects of a course or module.

Updates to the programme

Academic year	Module	Change
2025/26	ML1025 Chinese Language (Beginners), FR1040 French Language (Beginners), SP1040 Spanish Language (Beginners)	Modern Language modules not offered
2025/26	GL1102 Micro to Macro: Rock Properties and Plate Tectonics	Option module not offered
2025/26	GY1422 Professional Skills for Geographers and Environmental Scientists	New option module
2025/26	GL1107 From Core to Crust	New option module
2025/26	GL1108 Our Dynamic Planet	New option module
2026/27	GY2437 Research Design and GY2438 Overseas Field Course	New core modules replacing 30 credit module GY2435 Research Design (Overseas Field Course)

a) BSc Environmental Science

Level 6/Year 1 2025/26

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	30 credits	45 credits

Status	Year long	Semester 1	Semester 2
Optional	n/a	30 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GY1431	EVOLUTION OF THE EARTH SYSTEM	15 credits
Sem 1	GY1424	THE DIGITAL WORLD	15 credits
Sem 2	GY1432	THE CONTEMPORARY EARTH SYSTEM	15 credits
Sem 2	GY1433	FIELD AND LABORATORY TECHNIQUES	15 credits
Sem 2	GY1421	WORKING WITH GEOGRAPHICAL INFORMATION	15 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
SEM1	GL1103	PALAEOBIOLOGY AND THE STRATIGRAPHIC RECORD	15
SEM 1	GY1422	PROFESSIONAL SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS	15
SEM1	GL1107	FROM CORE TO CRUST	15
SEM1	GY1411	HUMAN GEOGRAPHY FOR A GLOBALISED WORLD	15
SEM1	BS1040	THE CELL: AN INTRODUCTION TO CELL BIOLOGY AND MICROBIOLOGY	30
SEM2	GY1412	ENVIRONMENT/NATURE/SOCIETY	15

Delivery period	Code	Title	Credits
SEM2	GL1104	NATURAL RESOURCES AND ENERGY FOR THE 21 ST CENTURY	15
SEM2	GL1108	OUR DYNAMIC PLANET	15
SEM2	BS1070	BIODIVERSITY AND BEHAVIOUR	15

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Level 5/Year 2 2026/27

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	15 credits	30 credits
Optional	n/a	45 credits	30 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
SEM 1	GY2420	CLIMATE CHANGE: IMPACTS, VULNERABILITY AND ADAPTATION	15 credits
SEM2	GY2437	RESEARCH DESIGN*	15
SEM2	GY2438	OVERSEAS FIELD COURSE	15

*Qualifying mark of 40% in dissertation proposal is required for progression into year 3

Option modules

Delivery period	Code	Title	Credits
SEM1	GY2433	CATCHMENT SYSTEMS	15
SEM1	GY2434	THE DYNAMIC BIOSPHERE	15
SEM1	GY2411	CRITICAL GEOGRAPHIES OF ENVIRONMENT AND DEVELOPMENT	15
SEM1	GY2431	DATA ANALYSIS	15
SEM1	GL2107	MAJOR EVENTS IN THE HISTORY OF LIFE	15
SEM1	GL2106	MINERAL RESOURCES FOR NET-ZERO CARBON 1	15
SEM1	BS2059	GLOBAL CHANGE BIOLOGY CONSERVATION BIOLOGY	15
SEM2	GY2436	AN INTRODUCTION TO PAST GLOBAL CLIMATE CHANGES	15
SEM2	GY2421	GEOGRAPHICAL INFORMATION SCIENCE	15
SEM2	BS2078	A FIELD GUIDE TO EVOLUTION	15

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Level 6/Year 3 2027/28

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	30 credits	n/a
Optional	n/a	30 credits	60 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GY3450	DISSERTATION	30 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
SEM1	GY3431	NEOTROPICAL RAINFORESTS	15
SEM1	GY3425	CRITICAL DIGITAL GEOGRAPHIES	15
SEM1	GY3433	UNDERSTANDING ECOSYSTEMS AND ENVIRONMENTS OF THE DISTANT PAST	15
SEM1	GY3411	CONTEMPORARY ENVIRONMENTAL CHALLENGES	15
SEM1	GL3102	ENVIRONMENTAL GEOSCIENCE	15
SEM1	BS3038	BIODIVERSITY IN PRACTICE	15
SEM1	NT3100	SUSTAINABILITY ENTERPRISE PARTNERSHIP PROJECT	15

Delivery period	Code	Title	Credits
SEM2	GL3109	MINERAL EXPLORATION, ECONOMICS AND SUSTAINABILITY	15
SEM2	GL3110	MINERAL RESOURCES FOR NET ZERO CARBON 2	15
SEM2	GY3424	REMOTE SENSING OF THE ENVIRONMENT	15
SEM2	GY3434	STABLE ISOTOPES IN THE ENVIRONMENT	15
SEM2	GY3435	WATER QUALITY PROCESSES AND MANAGEMENT	15
SEM2	GY3436	DRYLANDS: LANDSCAPES, ECOSYSTEMS AND PEOPLE	15
SEM2	GY3421	INFORMATION VISUALISATION	15
SEM2	GY3426	RESEARCH COMMUNICATION	15
SEM2	BS3080	BEHAVIOURAL ECOLOGY	15
SEM2	NT3200	SUSTAINABILITY ENTERPRISE PARTNERSHIP PROJECT	15

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

b) BSc ENVIRONMENTAL SCIENCE WITH A YEAR ABROAD

Approved institutions for include those listed at https://le.ac.uk/cite/study-abroad-unit/outgoing/destinations

FIRST SECOND AND FINAL YEAR MODULES

Regulations for the first and second year are the same as for the B.Sc. Environmental Science. Regulations for the fourth year of the course are the same as for the third year of the B.Sc. Environmental Science.

THIRD YEAR MODULES

The third year will be spent abroad in the USA, Canada, Finland, Spain, Germany and the Netherlands taking approved courses in one of the institutions associated with the Department of Geography. Level 3 modules from the Geography and Environmental Sciences Departments of the host Institution, plus introductory language modules, to the same overall credit value per year as Leicester. A small proportion of modules in other subjects may be taken by prior agreement of the International Officer in the School of Geography, Geology and the Environment, University of Leicester. Students will be required to reach a prescribed level of attainment in the work done abroad (a pass in Leicester terms according to the mark translation). Any student failing the year abroad component will revert back to the standard Leicester variant of their degree.

c) BSc ENVIRONMENTAL SCIENCE WITH A YEAR IN INDUSTRY

Level 4/Year 1 2025/26

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	30 credits	45 credits
Optional	n/a	30 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GY1431	EVOLUTION OF THE EARTH SYSTEM	15 credits
Sem 1	GY1424	THE DIGITAL WORLD	15 credits
Sem 2	GY1432	THE CONTEMPORARY EARTH SYSTEM	15 credits
Sem 2	GY1433	FIELD AND LABORATORY TECHNIQUES	15 credits
Sem 2	GY1421	WORKING WITH GEOGRAPHICAL INFORMATION	15 credits

N/A

Option modules

Delivery period	Code	Title	Credits
SEM 1	GY1422	PROFESSIONAL SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS	15
SEM1	GL1103	PALAEOBIOLOGY AND THE STRATIGRAPHIC RECORD	15
SEM1	GL1107	FROM CORE TO CRUST	15
SEM1	GY1411	HUMAN GEOGRAPHY FOR A GLOBALISED WORLD	15
SEM1	BS1040	THE CELL: AN INTRODUCTION TO CELL BIOLOGY AND MICROBIOLOGY	30
SEM2	GY1412	ENVIRONMENT/NATURE/SOCIETY	15
SEM2	GL1104	NATURAL RESOURCES AND ENERGY FOR THE 21 ST CENTURY	15
SEM2	GL1108	OUR DYNAMIC PLANET	15
SEM2	BS1070	BIODIVERSITY AND BEHAVIOUR	15
YEAR LONG	ML1025	CHINESE LANGUAGE (BEGINNERS)	30
YEAR LONG	FR1040	FRENCH LANGUAGE (BEGINNERS)	30
YEAR LONG	SP1040	SPANISH LANGUAGE (BEGINNERS)	30

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Level 5/Year 2 2026/27

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	15 credits	30 credits
Optional	n/a	45 credits	30 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
	Click or tap here to enter text.		
SEM1	GY2420	CLIMATE CHANGE: IMPACTS VULNERABILITY AND ADAPTATION	15
SEM2	GY2437	RESEARCH DESIGN	15
SEM2	GY2438	OVERSEAS FIELD COURSE	15

Notes

*Qualifying mark of 40% in dissertation proposal is required for progression into year 3

Option modules

Delivery period	Code	Title	Credits
SEM1	GY2433	CATCHMENT SYSTEMS	15

Delivery	Code	Title	Credits
period			
SEM1	GY2434	THE DYNAMIC BIOSPHERE	15
SEM1	GY2411	CRITICAL GEOGRAPHIES OF ENVIRONMENT AND DEVELOPMENT	15
SEM1	GY2431	DATA ANALYSIS	15
SEM1	GL2107	MAJOR EVENTS IN THE HISTORY OF LIFE	15
SEM1	GL2106	MINERAL RESOURCES FOR NET-ZERO CARBON 1	15
SEM1	BS2059	GLOBAL CHANGE BIOLOGY CONSERVATION BIOLOGY	15
SEM2	GY2436	AN INTRODUCTION TO PAST GLOBAL CLIMATE CHANGES	15
SEM2	GY2421	GEOGRAPHICAL INFORMATION SCIENCE	15
SEM2	BS2078	A FIELD GUIDE TO EVOLUTION	15

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

THIRD YEAR

Students who gain an industry placement will be assessed as per the standard model for undergraduate placements in the College of Science and Engineering. The marks from this year will not be included in the final degree assessment.

Year Long	ADGL223	On Placement	0 credits
-----------	---------	--------------	-----------

Level 6/Year 4 2028/29

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	30 credits	n/a
Optional	n/a	30 credits	60 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GY3450	DISSERTATION	30 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
SEM1	GY3431	NEOTROPICAL RAINFORESTS	15
SEM1	GY3425	CRITICAL DIGITAL GEOGRAPHIES	15
SEM1	GY3433	UNDERSTANDING ECOSYSTEMS AND ENVIRONMENTS OF THE DISTANT PAST	15
SEM1	GY3411	CONTEMPORARY ENVIRONMENTAL CHALLENGES	15
SEM1	GL3102	ENVIRONMENTAL GEOSCIENCE	15
SEM1	BS3038	BIODIVERSITY IN PRACTICE	15

Delivery	Code	Title	Credits
period			
SEM1	NT3100	SUSTAINABILITY ENTERPRISE PARTNERSHIP PROJECT	15
SEM2	GL3109	MINERAL EXPLORATION, ECONOMICS AND SUSTAINABILITY	15
SEM2	GL3110	MINERAL RESOURCES FOR NET ZERO CARBON 2	15
SEM2	GY3424	REMOTE SENSING OF THE ENVIRONMENT	15
SEM2	GY3434	STABLE ISOTOPES IN THE ENVIRONMENT	15
SEM2	GY3435	WATER QUALITY PROCESSES AND MANAGEMENT	15
SEM2	GY3436	DRYLANDS: LANDSCAPES, ECOSYSTEMS AND PEOPLE	15
SEM2	GY3421	INFORMATION VISUALISATION	15
SEM2	GY3426	RESEARCH COMMUNICATION	15
SEM2	BS3080	BEHAVIOURAL ECOLOGY	15
SEM2	NT3200	SUSTAINABILITY ENTERPRISE PARTNERSHIP PROJECT	15

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Appendix 2: Module specifications

See undergraduate <u>module specification database</u> (Note - modules are organized by year of delivery).