

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2022/23

Date created: Click or tap here to enter text.

Last amended: 15/03/2022

Version no. 1

1. Programme title(s) and code(s):

a) Award Titles

Bachelor of Engineering (Mechanical)

Diploma of Higher Education (Mechanical Engineering)*

Certificate of Higher Education (Mechanical Engineering)*

* These awards are only available as exit awards, are not available for students to register onto.

b) HECOS Code

HECOS CODE	%
100190	100

c) UCAS Code (where required) H300

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus-style based in Panjin Campus, DUT

4. Registration periods

The normal period of registration is four years

The maximum period of registration is six years

5. Typical entry requirements:

All students that have followed the Chinese school and qualification system must be from the same Gaokao group (the top group out of four) as students entering other DUT undergraduate programmes. Students must also possess a sufficient level of English language to enable such students to undertake studies with the English language as the teaching medium;

For Year 1 entry, a Gaokao English language score of 70% for English language or an IELTS score of 5.0 will be required. After intensive English language teaching in Year 1, students will be required to demonstrate CEFR Level B2 in English language (otherwise IELTS 6.0).

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

All the variants of the programmes aim to satisfy the criteria of the accrediting engineering institutions in preparation for future application of the accreditation. These are based on the Engineering Council's Accreditation of Higher Education Programmes (AHEP) learning outcomes. These are defined in 6 overarching outcomes:

- Science and Mathematics (SM),
- Engineering Analysis (EA),
- Design (D),
- Economic, Legal, social, ethical and environmental context (EL)
- Engineering Practice (P)
- Additional General Skills (G).

Programme-level Intended Learning Outcomes for the degrees programmes are mapped, using the shorthand codes above, to these overarching outcomes in section 9 - Programme Outcomes below. Each of these overarching outcomes is divided into a maximum of 11 specific outcomes (e.g. P1 - P11). These are mapped to module-level Intended Learning Outcomes and assessment elements, and are detailed in the module specifications.

The BEng programme aims to

- 1. provide a curriculum that is enjoyable and motivating and which creates enthusiasm for engineering through the challenge of responding to interesting engineering problems;
- 2. provide students with the breadth of understanding in relevant science and mathematics to allow analysis and design of Mechanical Engineering systems that improve quality of life through being able to integrate knowledge from other engineering disciplines.
- 3. develop students' knowledge and understanding of the tools and techniques used for modelling, analysis, design and control of complex Mechanical engineering systems;
- 4. develop students' detailed knowledge and understanding of engineering applications used in research and industry;
- 5. cultivate the synergy between teaching and research; and
- 6. foster students' independent learning and organisational skills.

8. Reference points used to inform the programme specification:

- QAA Benchmarking Statement
- Framework for Higher Education Qualifications (FHEQ)
- UK Quality Code for Higher Education
- Engineering Accreditation Board (EAB) Bachelors and Integrated Masters Degree Learning Outcomes (AHEP 3rd Edition)
- UK-SPEC (UK Standard for Professional Engineering Competence)
- Engineering Council Compensation and Condonement requirements November 2018.
- University Learning Strategy
- University Assessment Strategy
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual) for Leicester campus programme
- United Nations Education for Sustainable Development Goals
- Student Destinations Data for Leicester campus programme

9. Programme Outcomes:

Intended	Teaching and	How Demonstrated?
Learning	Learning	
	(a) Discipline specific knowledge a	nd competencies

(i) Mastery of an appropriate body of		
	lastery of an appropriate body o	
Demonstrate knowledge of the scientific and mathematical principles and techniques necessary for a Mechanical Engineer, including materials, applied thermodynamics, fluids, dynamics, structures, failure mechanisms (SM).	Lectures, tutorials, seminars, laboratory practicals, directed reading, independent research, resource- based learning.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
(ii) Understandii	ng and application of key conce	epts and techniques
Demonstrate knowledge, understanding and application of appropriate mathematical, computational and scientific techniques and methods for modelling and analysing Mechanical engineering problems (SM, EA).		Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
Demonstrate knowledge and understanding of the design process and design methodologies used in the discipline (D)	Lectures, tutorials, surgeries problem solving classes, independent research, project supervision. Lectures, tutorials, independent	As above
Demonstrate knowledge and understanding of management and business practices that	research, project supervision.	As above
influence an engineer's work <mark>(EL).</mark>	Lectures, tutorials, independent research, project supervision.	As above
Demonstrate knowledge and understanding of manufacturing and/or operational practice (P).		
	(iii) Critical analysis of key issu	Jes
Apply scientific principles to model and analyse engineering systems, processes and products (SM).	Lectures, tutorials, surgeries problem solving classes computer practical classes, example sheets.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based
components as part of the design process.	As above Problem solving exercises,	exercises, design tasks, simulation exercises, group projects, independent projects.
Evaluate commercial risks and technical risks <mark>(EL).</mark>	independent research projects, group projects.	

	Teeching	Llow Domonotrated 2
Intended Learning	Teaching and Learning	How Demonstrated?
) Clear and concise presentatio	n of material
Interpret and report results, presenting data in alternative forms suitable for a range of different audiences in order to create deeper understanding and/or greater impact (D, P, G).	Lectures, seminars, masterclasses.	Written assignments, exhibitions, poster displays, reports, independent research projects.
· · ·	cal appraisal of evidence with a	
		Computer-based exercises, simulation exercises, research projects.
needs taking into account the		Problem solving exercises, simulations, exhibitions, independent research.
Create and design new processes or products to fulfil a specified requirement through synthesis of ideas from a wide range of sources (D).		Problem solving exercises, simulations, exhibitions, independent research.
Perform practical testing, technical analysis and critical evaluation of design ideas in laboratory or through simulation (P)	Design tasks, laboratory practicals, simulation exercises, group projects, , group projects.	Laboratory examinations, laboratory reports, simulation reports.
[vi) Other discipline specific cor	npetencies
Select and use appropriate test and measurement instrumentation (P).	Laboratory practicals, group research projects, independent research projects.	Laboratory reports, examinations, projects reports.
Select and conduct appropriate experimental procedures (P).	independent research.	Laboratory reports, examinations, project reports.
Demonstrate knowledge and understanding of manufacturing and/or operational practice (P)	Manufacturing skills programme, work placement.	Laboratory reports, written assignments, work placement report.
practice related to hazards and operational safety to ensure good working practices and effective		Laboratory reports, written assignments.
	All teaching and learning methods detailed above.	
	(b) Transferable	
Present technical and business information orally, in an appropriate form for a given audience (D, G).	(i) Oral Tutorials, group projects, independent research, project supervision.	Oral presentations, portfolio.
	(ii) Written	
Communicate business and technical information in an appropriate written form for a given audience <mark>(D).</mark>	Lectures, group projects, independent research, project supervision.	Written assignments, laboratory reports, essays, independent project reports.
	As above	As above

Report on a practical or	
simulation test of a design	
solution including analysis and	
discussion of the results (D).	

Intended	Teaching and	How Demonstrated?
Learning	Learning	
	(iii) Information	
Use standard and specialist engineering IT software confidently to conduct and report on engineering analysis and projects (G).	Lectures, group projects, independent research, project supervision.	Written assignments, laboratory reports, essays, independent project reports.
	(iv)	
Manipulate and sort data to generate new data sets <mark>(SM,</mark> <mark>EA).</mark>	Problem-solving classes, research projects. Problem-solving classes, research	Computer-based exercises, written assignments, poster displays, oral presentations.
Manipulate and present data in alternative formats to create deeper understanding or greater	projects.	
impact <mark>(EA, D).</mark>		
Work collaboratively as part of an	(v) Team	Learning logs/diaries, learning
engineering team undertaking a range of different team roles (P).	supervision, induction programmes.	portfolios, group projects, simulation exercises.
	(vi) Problem	
Solve problems through the integration of knowledge of mathematics, science, information technology, design, business context and engineering practice <mark>(SM, EA).</mark>	Project supervision, lectures, tutorials, example sheets, simulation exercises, laboratory based exercises, computer-based exercises, independent research projects, group projects.	
Select & analyse appropriate evidence to solve non-routine problems <mark>(EA, D).</mark>	As above	
Use systematic analysis and design methods to solve problems in unfamiliar situations (D).	As above	
Use creativity and innovation to solve problems (D).	As above	
Apply standard management techniques to plan and allocate resources to projects (EL).	As above	
	(vii) Information	
Select and apply scientific evidence based methods in the solution of problems <mark>(SM).</mark>	Lectures, tutorials, example sheets, simulation exercises, laboratory based exercises, computer-based exercises, independent research projects, group projects.	Individual research projects, oral presentations, project reports, problem-based examinations, practical demonstrations.
Search for information related to design solution, evaluate it and suggest requirements for additional information <mark>(D).</mark>	As above	As above
Plan and manage the design process, including cost drivers and evaluate outcomes (D)	As above	As above

	(viii) Skills for lifelong	
	Work placement, simulation	Work placement report, simulation
understanding of the professional		exercises, reports, independent
	independent research.	projects.
engineer and legal requirements		
<mark>(EL).</mark>		Work placement report,
		independent project report, learning
Learn independently and		logs/diaries, learning portfolios.
understand new concepts in the	Independent research projects, group	
discipline readily <mark>(G).</mark>	research projects,.	
		Work placement report,
		independent project report, learning
Develop and implement personal		logs/diaries, learning portfolios.
plan of work to meet a deadline.	Independent research projects, group	
Identify the critical activities	research projects.	
within a personal plan of work		
(G).		Work placement report, independent
		project report, learning logs/diaries,
		learning portfolios.
Exercise initiative and personal	Independent research projects,	
	group research projects, work	Learning partfolias
a team member or as a leader	placement.	Learning portfolios
<mark>(P, G).</mark>		
Explore career development	Masterclasses, learning portfolios <mark>,</mark>	
opportunities <mark>(G)</mark>	work placement	

10. Progression points:

This programme follows the standard Scheme of Progression set out in Senate Regulation 5 governing undergraduate programmes.

There are two progression points in each academic year: end of Semester 1 and end of Semester 2 of the DUT-DLI teaching calendar. A progression decision is made by the DLI Board of Examiners on the basis of the Semester 1 exam/resit results in March and Semester 2 exam/resit results in July each year. Where it is known following Semester 1 that a student has not met the requirements to progress to the next year, they may be required to suspend their studies at that stage.

The following additional progression requirements for this programme have been approved:

- Students must pass the English language modules in year 1, which cannot be carried into year 2, in order to be able to demonstrate the ability to learn and study in English.
 - EG2006 has no resit option so must be passed at the first attempt because to provide one is impractical given major individual or group projects modules and/or those covering AHEP3 learning outcomes that are not assessed in other modules are designated as being required to be passed at Honours level and cannot be treated as compensated fails for progression. These are indicated in the relevant module specifications: EG1006, EG2006 and EG2004.

<u>Transfer between different degrees:</u> Students not satisfying the UoL progression requirements may be allowed to transfer onto DUT programmes. Students satisfying the UoL progression requirements may be allowed to transfer to the University of Leicester campus-based degree programme, subject to capacity and physical resource limitations on the UoL campus.

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> <u>Regulation 5</u>.

The following additional award requirements for this programme have been approved as conditions of professional body accreditation:

• Major individual or group project modules and/or those covering AHEP3 learning outcomes that are not assessed in other modules are designated as being required to be passed at Honours level and cannot be treated as compensated fails for the purpose of award. For BEng these are EG3005 and EG3008.

12. Special features:

Programme delivered entirely in English, UK-style facilities provided on Panjin campus, Small group tutorials via video conferencing, group problem solving, research based projects, problem based learning, Reflect lecture capture.

13. Indications of programme quality

Normal University academic quality assurance processes are used to continuously review and improve the programmes. The last major review and re-structure of the programmes was during institutional Curriculum Transformation process, resulting in the current programmes structures being applied to students entering from academic year 2018/2019.

All of the current BEng courses delivered at the University of Leicester are accredited by the appropriate professional engineering institutions. It is our intention to seek accreditation from the EAB for this BEng Mechanical Engineering programme during the next accreditation review.

14. External Examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found <u>here</u>.

APPENDIX 1: Programme structure (programme regulations)

Updates to the programme

Academic year affected	Module Code(s)	Update
2025/26	EG3126	EG3126 replaced with EG3124 Tribology in Engineering Design.

BEng Mechanical Engineering

ENGINEERING TRAINING

FIRST YEAR MODULES

FIRST YEAR MO	SEMESTER 1		
Core Mo	odules	с	redits
E L0002	UNIVERSITY ENGLISH 1: SPEAKING AND LISTENING	15	
EL0003	UNIVERSITY ENGLISH 2: READING AND WRITING	15	
EL0004	UNIVERSITY ENGLISH 3: PROJECT	15	
EG0280	ADVANCED MATHEMATICS I	15	
		Semester Total	60
Additional Non-Cr	redit Bearing Modules		
	MORAL CULTIVATION AND BASIC LAW		
	PHYSICAL EDUCATION I		
	MILITARY THEORY AND TRAINING		
	SEMESTER 2		
Core Mo	odules	C	redits
EL0005	ENGLISH FOR SPECIFIC ACADEMIC PURPOSES	15	
EG0281	ADVANCED MATHEMATICS II	15	
EG0282	MECHANICAL ENGINEERING FOUNDATION	15	
EG0283	ELECTRONIC AND ELECTRICAL ENGINEERING FOUNDATION	15	
		Semester Total	60
Additional Non-Cree	dit Bearing Modules		
	CHINESE MODERN CONTEMPORARY HISTORY AND SITUATION POL	_ICY	
	PHYSICAL EDUCATION II		
	DUT GENERAL OPTIONAL MODLE I		
	SEMESTER 3		
Additional Non-C	Credit Bearing Modules		
	COLLEGE STUDENT MENTAL HEALTH AND HEALTH EDUCATION		
SECOND YEAR	IODULES		
	YEAR LONG		
EG1006	ENGINEERING DESIGN AND EXPERIMENTATION	30	
	SEMESTER 1		
Core Mo	dules		
EG1201	ELECTRICAL AND ELECTRONIC ENGINEERING	30	
EG1280	ENGINEERING MATHEMATICS I	15	
		Semester Total	60
Additional Non-C	redit Bearing Modules		
	PRINCIPLE OF MARXISM AND THEORY OF SOCIALISM		

SEMESTER 2		-	
Core Mo			edite
EG1101		30	
EG1281	ENGINEERING MATHEMATICS II	15 Somootor Total	
Additional Non (redit Paaring Modulos	Semester Total	6
Additional Non-C	Credit Bearing Modules DUT GENERAL OPTIONAL MODULE II		
	DOT GENERAL OF HONAL MODULE II		
	SEMESTER 3		
Additional Non-C	Credit Bearing Modules		
	ON-SITE VISTING PRACTICE		
Student Et	fort on EG1006 is split approximately 15:15 credits sem1:sem2	to give even loading.	
THIRD YEAR MO			
Core Modules	SEMESTER 1	Credits	
EG2111	MATERIALS & STRUCTURES	15	
EG2302	SYSTEM DYNAMICS AND CONTROL	15	
EG2121	MATERIALS PROCESSING	15	
EG2112	DYNAMICS & THERMOFLUIDS	15	
		Semester Total	60
Additional Non-O	Credit Bearing Modules		
	DUT GENERAL OPTIONAL MODULE III		
	SEMESTER 2		
Core Module	95	Credits	5
EG2004	ENGINEERING EXPERIMENTATION AND ANALYSIS	15	
EG2006	INTEGRATED ENGINEERING DESIGN	30	
EG2122	APPLIED ENGINEERING THERMODYNAMICS	15	
		Semester Total	60
Additional Non-O	Credit Bearing Modules		
	PROCESS MACHINERY AND EQUIPMENT		
	PROCESS PRINCIPLE AND EXPERIMENT I		
	SEMESTER 3		
Additional Non-	Credit Bearing Modules		
	PRODUCTION PRACTICAL		
FOURTH YEAR I			
Core M	SEMESTER 1	C.	redits
EG3313		15	euna
EG3008		15	
EG3000		15	
EG3124	TRIBOLOGY IN ENGINEERING DESIGN	15	
Optional Module			
	5 credits from:		
EG3111		15	
	RIGID-BODY & STRUCTURAL DYNAMICS	15	
EG3422	AEROSPACE MATERIALS & STRUCTURES	15	
		Semester Total	75

SEMESTER 2

EG3323	DIGITAL CONTROL & ACTUATORS
EG3005	FINAL YEAR PROJECT

Additional Non-Credit Bearing Modules

CAREER DEVELOPMENT

Appendix 2: Module specifications

See undergraduate module specification database (Note - modules are organized by year of delivery).