

Programme Specification (Undergraduate) 2021/22 Entry. Date amended: March 2022

1. Programme Title and UCAS code:

BEng in Mech Eng H300

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus-style based in Panjin Campus, DUT

4. Registration periods

The normal period of registration is four years

The maximum period of registration is six years

5. Typical entry requirements:

All students that have followed the Chinese school and qualification system must be from the same Gaokao group (the top group out of four) as students entering other DUT undergraduate programmes. Students must also possess a sufficient level of English language to enable such students to undertake studies with the English language as the teaching medium;

For Year 1 entry, a Gaokao English language score of 70% for English language or an IELTS score of 5.0 will be required. After intensive English language teaching in Year 1, students will be required to demonstrate CEFR Level B2 in English language (otherwise IELTS 6.0).

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to

- provide students with direct experience of a Leicester-style degree programme
- enhance and develop the students' English language skills
- provide a curriculum that is enjoyable and motivating and which creates enthusiasm for engineering through the challenge of responding to interesting engineering problems;
- provide students with the breadth of understanding in electrical and electronic as well as mechanical engineering obtainable through working in a general engineering environment;
- develop students' knowledge and understanding of the tools and techniques used for modelling, analysis, design and control of complex engineering systems;
- develop students' detailed knowledge and understanding of engineering applications used in research and industry;
- cultivate the synergy between teaching and research;
- maintain quality in all aspects of the teaching and learning environment, presenting materials
 in a manner most appropriate to the learning goals, to students' preferred learning styles as
 well as to subject matter; and
- foster students' independent learning and organisational skills.enhance written and oral communication skills

8. Reference points used to inform the programme specification:

- QAA Benchmarking Statement for <u>Engineering</u> (2010)
- University of Leicester Learning and Teaching Strategy 2011-2016
- University of Leicester Periodic Developmental Review Report (May 2015)
- External Examiners' reports (annual)
- Industrial Consultative Committee
- UK-SPEC (UK Standard for Professional Engineering Competence)
- EAB accreditation [http://www.engc.org.uk/education-skills/course-search/acad/] (last accreditation in 2014)

9. Programme Outcomes:

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
(a) Disc	ipline specific knowledge and co	mpetencies
(i) M	astery of an appropriate body of kn	owledge
Demonstrate knowledge of the principles of general engineering.	Lectures, tutorials, seminars, laboratory practicals, directed reading, independent research, resource-based learning.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
(ii) Understar	nding and application of key concept	
Demonstrate knowledge, understanding and application of appropriate mathematical, computational and scientific techniques and methods for modelling and analysing engineering problems.	Lectures, tutorials, surgeries problem solving classes, computer practical classes, example sheets.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
Demonstrate knowledge and understanding of the design process and design methodologies used in the discipline.	Lectures, tutorials, surgeries problem solving classes, independent research, project supervision.	As above
Demonstrate knowledge and understanding of management and business practices that influence an engineer's work.	Lectures, tutorials, independent research, project supervision.	As above
Demonstrate knowledge and understanding of manufacturing and/or operational practice.	Lectures, tutorials, independent research, project supervision.	As above
	(iii) Critical analysis of key issues	5
Apply scientific principles to model and analyse engineering systems, processes and products. Analyse systems, processes or components as part of the design process. Evaluate commercial risks and technical risks in unfamiliar	Lectures, tutorials, surgeries problem solving classes computer practical classes, example sheets. As above Problem solving exercises, independent research projects, group	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
circumstances.	projects.	

Intended Learning	Teaching and Learning	How Demonstrated?				
Outcomes	Methods					
(iv)	Clear and concise presentation of r	material				
Interpret and report results, presenting data in alternative forms suitable for a range of different audiences in order to create deeper understanding and/or	Lectures, seminars, masterclasses.	Written assignments, exhibitions, poster displays, reports, independent research projects.				
greater impact.	al appraisal of avidence with appro	printo incight				
	al appraisal of evidence with appro					
	Computer practical classes, lectures, surgeries.	Computer-based exercises, simulation exercises, research projects.				
,	Design tasks, laboratory practicals, simulation exercises, group projects.	Problem solving exercises, simulations, exhibitions, independent research.				
	Design tasks, laboratory practicals, simulation exercises, group projects.	Laboratory examinations, laboratory reports, simulation reports.				
	Design tasks, laboratory practicals, simulation exercises, group projects,	Written assignments, oral presentations.				
	vi) Other discipline specific compete	encies				
Select and use appropriate test and measurement instrumentation.	Laboratory practicals, group research projects, independent research projects.	Laboratory reports, examinations, projects reports.				
Select and conduct appropriate experimental procedures.	Laboratory practicals, design tasks, independent research.	Laboratory reports, examinations, project reports.				
Demonstrate knowledge and understanding of manufacturing and/or operational practice.	Lectures, simulation.	Laboratory reports, written assignments.				
Apply understanding of codes of practice related to hazards and operational safety to ensure good working practices.	Laboratory practicals, design tasks, independent research.	Laboratory reports, written assignments.				
	(b) Transferable skills					
	(i) Oral communication					
Present technical and business information orally, in an appropriate form for a given audience.		Oral presentations, portfolio.				
	(ii) Written communication	L				
Communicate business and technical information in an appropriate written form for a given audience.	Lectures, group projects, independent research, project supervision.	Written assignments, laboratory reports, essays, independent projectreports.				
Report on a practical or simulation test of a design solution including analysis and discussion of the results.	As above	As above				

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Outcomes	(iii) Information technology	
Use of spreadsheets; Basic word	Workshops; Lab data analysis	Assessed tasks; Project report
processing; Use of Eng Software, e.g	· ·	Laboratory assessment and projects
drawing and FEA modelling		
	(iv) Numeracy	
Manipulate and sort data to	Problem-solving classes, research	
generate new data sets.	projects.	Computer-based exercises, written assignments, poster displays, oral
Manipulate and present data in	Problem-solving classes, research	presentations.
alternative formats to create deeper		presentations.
understanding or greater impact.		
	(v) Team working	
Work collaboratively as part of a	Tutorials, masterclasses, project	Learning logs/diaries, learning portfolios,
team undertaking a range of	supervision, induction programmes.	group projects, simulation exercises.
different team roles.	() > 11	
Calva analylani dhi e dhi	(vi) Problem solving	
Solve problems through the integration of knowledge of	Project supervision, lectures, tutorials, example sheets, simulation exercises,	
mathematics, science, information	laboratory based exercises, computer-	
	based exercises, independent research	
and engineering practice.	projects, group projects.	Individual research projects, oral
		presentations, project reports, problem-
Select & analyse appropriate	As above	based examinations, practical
evidence to solve non-routine		demonstrations.
problems. Use systematic analysis and design methods to solve		
problems in unfamiliar situations.		
Use creativity and innovation to	As above	
solve problems. Apply standard		
management techniques to plan		
and allocate resources to projects.	(wii) Information bandling	
Select and apply scientific evidence	(vii) Information handling Lectures, tutorials, example sheets,	Individual research projects, oral
based methods in the solution of	simulation exercises, laboratory based	presentations, project reports,
problems.	exercises, computer-based exercises,	problem-based examinations, practical
	independent research projects, group	demonstrations.
	projects.	
Search for information related to		
design solution, evaluate it and suggest requirements for additional	As above	
information. Work with limited or		
contradictory information.		
	(viii) Skills for lifelong learning	
Demonstrate knowledge and	Work placement, simulation exercises,	Simulation exercises, reports,
understanding of the professional	independent research.	independent projects.
and ethical responsibilities of an		
engineer.		
Learn independently and	Independent research projects, group	Independent project report, learning
understand new concepts in the	research projects,.	logs/diaries, learning portfolios.
discipline readily.		
·		
Develop and implement personal	Independent research projects, group	Independent project report, learning
plan of work to meet a deadline.	research projects.	logs/diaries, learning portfolios
Identify the critical activities within		
a personal plan of work.		
Explore career development	Masterclasses, learning portfolios,	Learning portfolios
opportunities.	, 31 ,	1

10. Progression points:

There are two progression points in each academic year: end of Semester 1 and end of Semester 2 of the DUT-DLI teaching calendar. A progression decision is made by the DLI Board of Examiners on the basis of the Semester 1 exam/resit results in March and Semester 2 exam/resit results in July each year. Where it is known following Semester 1 that a student has not met the requirements to progress to the next year, they may be required to suspend their studies at that stage.

Minimum assessment levels are outlined with each module specification as set out in **Senate Regulation 5.** Additional progression criteria include:-

- Students must pass the English language modules in year 1, which cannot be carried into year 2, in order to be able to demonstrate the ability to learn and study in English.
- In order to ensure sufficient professional ability within engineering laboratories, management and design in line with the programme outcomes and the expectations of the accreditation body (Engineering Accreditation Board) students must pass each of the following modules including EG1006, EG2004 and EG2006 for which there are no opportunities for reassessment. These modules have an additional attendance requirement wherein students may not be absent for more than 25% of the schedule laboratory classes. Additional "catch-up" sessions will be provided for students for whom non-attendance has been mitigated.

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

<u>Transfer between different degrees:</u> Students not satisfying the UoL progression requirements may be allowed to transfer onto DUT programmes. Students satisfying the UoL progression requirements may be allowed to transfer to the University of Leicester campus-based BSc Chemistry degree programme, subject to capacity and physical resource limitations on the UoL campus.

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> Regulation 5.

12. Special features:

Programme delivered entirely in English, UK-style facilities provided on Panjin campus, Small group tutorials via video conferencing, group problem solving, research based projects, problem based learning, Reflect lecture capture.

13. Indications of programme quality

All of the current BEng courses are accredited by the appropriate professional engineering institutions. It is our intention to seek accreditation from the EAB for this BEng Mech Eng programme during the next accreditation review.

14. External Examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for the in-house BEng Mechanical Engineering programme can be found <u>here</u>.

Appendix 1: Programme structure (programme regulations) (overleaf)

Appendix 2: Module specifications

Appendix 3: Skills matrix

APPENDIX 1 Programme structure

IRST YEAR MODU	FS		
	SEMESTER 1		
Core Modules			Credits
EL0002	ENGLISH FOR GENERAL ACADEMIC PURPOSES		45
EG0280	ADVANCED MATHEMATICS I		15
		Semester Total	60
Additional Non-Cre	dit Bearing Modules		
	MORAL CULTIVATION AND BASIC LAW		
	PHYSICAL EDUCATION I		
	MILITARY THEORY AND TRAINING		
	SEMESTER 2		
ore Modules			Credits
EL0005	ENGLISH FOR SPECIFIC ACADEMIC PURPOSES		15
EG0281	ADVANCED MATHEMATICS II		15
EG0282	MECHANICAL ENGINEERING FOUNDATION		15
EG0283	ELECTRONIC AND ELECTRICAL ENGINEERING FOUNDATION		15
		Semester Total	60
Additional Non-Cre	dit Bearing Modules		
	CHINESE MODERN CONTEMPORARY HISTORY AND SITUATION POLICY		
	PHYSICAL EDUCATION II		
	DUT GENERAL OPTIONAL MODLE I SEMESTER 3		
Additional Non-Cre	dit Bearing Modules		
Additional Non-Cre	COLLEGE STUDENT MENTAL HEALTH AND HEALTH EDUCATION		
	COLLEGE STODENT WENTALTICALITY AND HEALTH EDUCATION		
SECOND YEAR MOI	DULES		
	YEAR LONG		
EG1006	ENGINEERING DESIGN AND EXPERIMENTATION SEMESTER 1		30
Core Mod	\$ <u>-</u>		
EG1201	ELECTRICAL AND ELECTRONIC ENGINEERING		30
EG1280	ENGINEERING MATHEMATICS I		15
201200	ENGINEERING MATTERIATIOS I		10
		Semester Total	60
Additional Non-Cre	dit Bearing Modules		
	PRINCIPLE OF MARXISM AND THEORY OF SOCIALISM		
	ENGINERRING WORKSHOP TRAINING		
	SEMESTER 2		
			Credits
ore Modules			30
ore Modules EG1101	MECHANICAL ENGINEERING		
	MECHANICAL ENGINEERING ENGINEERING MATHEMATICS II		15
EG1101		Semester Total	15 60
EG1281		Semester Total	

Student Effort on EG1006 is split approximately 15:15 credits sem1:sem2 to give even loading.

ON-SITE ENGINEERING VISTING PRACTICE

Additional Non-Credit Bearing Modules

THIRD YEAR MODULES

SEMESTER 1

	SEIVIESTER 1	
Core Modules		Credits
EG2111	MATERIALS & STRUCTURES	15
EG2302	SYSTEM DYNAMICS AND CONTROL	15
EG2121	MATERIALS PROCESSING	15
EG2112	DYNAMICS & THERMOFLUIDS	15
	Seme	ester Total 60
Additional Non-Cred	dit Bearing Modules	
	DUT GENERAL OPTIONAL MODULE III	
	SEMESTER 2	
Core Modules	SEMESTER 2	Credits
EG2004	ENGINEERING EXPERIMENTATION AND ANALYSIS	15
EG2004	INTEGRATED ENGINEERING DESIGN	30
EG2122	APPLIED ENGINEERING THERMODYNAMICS	15
202122	7. Filed Enterine File Indiana Structures	13
		ester Total 60
Additional Non-Cred	dit Bearing Modules PROCESS MACHINERY AND EQUIPMENT	
	PROCESS PRINCIPLE AAND EXPERIMENT I	
	SEMESTER 3	
Additional Non-Cred	lit Bearing Modules	
	PRODUCTION PRACTICAL	
FOURTH YEAR MOD		
Cara Madulas	SEMESTER 1	Credits
Core Modules EG3124	TRIBOLOGY IN ENGINEERING DESIGN	
EG3124 EG3313	TRIBOLOGY IN ENGINEERING DESIGN STATE VARIABLE CONTROL	15
EG3008	ENGINEERING MANAGEMENT	15 15
EG3008	HEAT TRANSFER AND ENERGY SYSTEMS	15
Optional Modules	TILAT TRANSPER AND ENERGY STSTEMS	13
Choose 15 c	redits from:	
EG3111	FINITE ELEMENT ANALYSIS AND DESIGN	15
EG3125	RIGID-BODY & STRUCTURAL DYNAMICS	15
EG3422	AEROSPACE MATERIALS & STRUCTURES	15
	Semo	ester Total 75
	SEMESTER 2	
Core Modules		Credits
EG3323	DIGITAL CONTROL & ACTUATORS	15
EG3323 EG3005	DIGITAL CONTROL & ACTUATORS FINAL YEAR PROJECT	15 30
	FINAL YEAR PROJECT	_
	FINAL YEAR PROJECT Semo	30

Appendix 3: Skills matrix for Engineering Degrees

The table below shows the modules and other activities in which particular skills are developed and/or assessed. Skills that are generic to engineering work (e.g communicating by means of drawing conventions) feature in many modules, but are shown below where they are a principal focus of a module.

Skills Matrix: H300 BEng in Mech Eng													
Date amended: 13 March 2017													
Programme Learning Outcomes	EL0002, EL0005 (English)	EG0282; EG0283 (Fund)	EG1006 (Design & Exp)	EG1101 (Mech Eng)	EG1201 (E E E)	EG2006 (Design & Man)	EG2004(Exp & Analysis)	EG3008 (Management)	EG3005 (Project)	Math modules group	Materials & Struct Group	Control & Sig Proc group	Thermo &fluids group
	ELC	EG(EG]	EG]	EG]	EG	EG2	EG	EG	Mat	Mat	Con	The
(a) Discipline specific knowledge and competencies													
(vi) Other discipline specific													
competencies													
Select and conduct appropriate			X				X		X				
experimental procedures, using appropriate test and measurement equipment.													
Design products, processes or			X			X			X		X		
systems, as appropriate to the choice of degree and options, showing awareness of relevant issues such as manufacturing, operation, safety, economy, environmental implications.													
Read and produce relevant types of engineering drawings and diagrams in accordance with standard conventions.			X			X			X				
Operate and communicate effectively as an engineer.	X	X				X		X	X				
(b) Transferable skills													
(i) Oral communication													
Present and discuss technical information orally, in appropriate forms for given audiences. (ii) Written communication	X	X	X			X	X		X				
Report and discuss engineering work			X			X	X		X				
such as tests, calculations and designs in a form appropriate to the intended recipient, with appropriate use of scientific terminology and style.			Α			Α	Α		Α				
(iii) Information technology													
Use a broad range of common IT tools such as word-processor, spreadsheets, email, file transfer and	X	X	X	X	X	X	X	X	X	X	X	X	X

the web.													
Use engineering IT tools and			X			X		X	X	X	X		
software where appropriate.													
(iv) Numeracy													
Manipulate and sort data to extract		X	X	X	X	X	X	X	X	X	X	X	X
useful information.													
Judge the degree of accuracy		X	X	X	X	X	X	X	X	X	X	X	X
appropriate to solving problems and													
presenting results													
(v) Team working													
Work collaboratively as part of a	X	X				X		X					
team undertaking a range of different													
team roles.													
(vi) Problem solving													
Solve problems through the									X				
integration of knowledge of													
mathematics, science, information													
technology, design, business context													
and engineering practice.													
Use creativity and innovation in the									X				
solution of problems.													
Identify the key aspects of a problem									X				
and use estimates and													
approximations in its solution.													
(vii) Information handling													
Identify information that would be			X			X	X	X					
useful in specific design or project													
tasks; search for, assess, filter and													
communicate it.													
(viii) Skills for lifelong learning													
Learn independently and expand		X				X	X		X				
their knowledge and understanding													
of their discipline, using the													
mathematical and other knowledge													
gained during the course.													
Assess own skills and abilities;		X				X	X		X				
identify and address weaknesses and													
opportunities.													

Math modules group: EG0280, EG0281, EG1280, EG1281

Materials & Structure modules group: EG1101, EG2111, EG2121, EG3111, EG3124, EG3125, EG3422

Thermo & fluids modules group: EG1101; EG2112; EG2122; EG3112;

Control & signal processing modules group: EG2302; EG3313; EG3323