

1. Programme Title and UCAS code:

BEng in Mech Eng H300

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus-style based in Panjin Campus, DUT

4. Registration periods

The normal period of registration is four years

The maximum period of registration is six years

5. Typical entry requirements:

All students that have followed the Chinese school and qualification system must be from the same Gaokao group (the top group out of four) as students entering other DUT undergraduate programmes. Students must also possess a sufficient level of English language to enable such students to undertake studies with the English language as the teaching medium;

For Year 1 entry, a Gaokao English language score of 70% for English language or an IELTS score of 5.0 will be required. After intensive English language teaching in Year 1, students will be required to demonstrate CEFR Level B2 in English language (otherwise IELTS 6.0).

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to

- provide students with direct experience of a Leicester-style degree programme
- enhance and develop the students' English language skills
- provide a curriculum that is enjoyable and motivating and which creates enthusiasm for engineering through the challenge of responding to interesting engineering problems;
- provide students with the breadth of understanding in electrical and electronic as well as mechanical engineering obtainable through working in a general engineering environment;
- develop students' knowledge and understanding of the tools and techniques used for modelling, analysis, design and control of complex engineering systems;
- develop students' detailed knowledge and understanding of engineering applications used in research and industry;
- cultivate the synergy between teaching and research;
- maintain quality in all aspects of the teaching and learning environment, presenting materials in a manner most appropriate to the learning goals, to students' preferred learning styles as well as to subject matter; and

• foster students' independent learning and organisational skills.enhance written and oral communication skills

8. Reference points used to inform the programme specification:

- QAA Benchmarking Statement for Engineering (2010)
- University of Leicester Learning and Teaching Strategy 2011-2016
- University of Leicester Periodic Developmental Review Report (May 2015)
- External Examiners' reports (annual)
- Industrial Consultative Committee
- UK-SPEC (UK Standard for Professional Engineering Competence)
- EAB accreditation [<u>http://www.engc.org.uk/education-skills/course-search/acad/</u>] (last accreditation in 2014)

9. Programme Outcomes:

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
(a) Disc	ipline specific knowledge and cor	mpetencies
(i) M	astery of an appropriate body of kn	owledge
Demonstrate knowledge of the principles of general engineering.	Lectures, tutorials, seminars, laboratory practicals, directed reading, independent research, resource-based learning.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
(ii) Understar	nding and application of key concept	ts and techniques
Demonstrate knowledge, understanding and application of appropriate mathematical, computational and scientific techniques and methods for modelling and analysing engineering problems.	Lectures, tutorials, surgeries problem solving classes, computer practical classes, example sheets.	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent projects.
Demonstrate knowledge and understanding of the design process and design methodologies used in the discipline.	Lectures, tutorials, surgeries problem solving classes, independent research, project supervision.	As above
Demonstrate knowledge and understanding of management and business practices that influence an engineer's work.	Lectures, tutorials, independent research, project supervision.	As above
Demonstrate knowledge and understanding of manufacturing and/or operational practice.	Lectures, tutorials, independent research, project supervision.	As above
	(iii) Critical analysis of key issues	5
Apply scientific principles to model and analyse engineering systems, processes and products. Analyse systems, processes or components as part of the design process.	Lectures, tutorials, surgeries problem solving classes computer practical classes, example sheets. As above	Examinations, laboratory reports, seminar presentations, contributions to discussions, problem-based exercises, design tasks, simulation exercises, group projects, independent

Evaluate commercial risks and	Problem solving exercises,	projects.
technical risks in unfamiliar	independent research projects, group	
circumstances.	projects.	

Intended Learning	Teaching and Learning	How Demonstrated?	
Outcomes	Methods		
(iv)	Clear and concise presentation of r	naterial	
Interpret and report results, presenting data in alternative forms suitable for a range of different audiences in order to create deeper understanding and/or greater impact.	Lectures, seminars, masterclasses.	Written assignments, exhibitions, poster displays, reports, independent research projects.	
(v) Critic	al appraisal of evidence with appro	priate insight	
Select and apply appropriate computer-based methods for modelling and analysing engineering problems.	Computer practical classes, lectures, surgeries.	Computer-based exercises, simulation exercises, research projects.	
Create and design new processes or products to fulfil a specified requirement through synthesis of ideas from a wide range of sources.	Design tasks, laboratory practicals, simulation exercises, group projects.	Problem solving exercises, simulations, exhibitions, independent research.	
Perform practical testing, technical analysis and critical evaluation of design ideas in laboratory or through simulation.	Design tasks, laboratory practicals, simulation exercises, group projects.	Laboratory examinations, laboratory reports, simulation reports.	
Take account of industrial and commercial constraints when applying engineering techniques.	Design tasks, laboratory practicals, simulation exercises, group projects,	Written assignments, oral presentations.	
(1	vi) Other discipline specific compete	encies	
Select and use appropriate test and measurement instrumentation.	Laboratory practicals, group research projects, independent research projects.	Laboratory reports, examinations, projects reports.	
Select and conduct appropriate experimental procedures.	Laboratory practicals, design tasks, independent research.	Laboratory reports, examinations, project reports.	
Demonstrate knowledge and understanding of manufacturing and/or operational practice.	Lectures, simulation.	Laboratory reports, written assignments.	
Apply understanding of codes of practice related to hazards and operational safety to ensure good working practices.	Laboratory practicals, design tasks, independent research.	Laboratory reports, written assignments.	
	(b) Transferable skills		
	(i) Oral communication		
Present technical and business information orally, in an appropriate form for a given audience.	Tutorials, group projects, independent research, project supervision.	Oral presentations, portfolio.	
(ii) Written communication			
Communicate business and technical information in an appropriate written form for a given audience.	Lectures, group projects, independent research, project supervision.	Written assignments, laboratory reports, essays, independent projectreports.	
Report on a practical or simulation test of a design solution including analysis and discussion of the results.	As above	As above	

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
	(iii) Information technology	
Use of spreadsheets; Basic word processing; Use of Eng Software, e.g. drawing and FEA modelling	Workshops; Lab data analysis Projects; Lab and Project reports	Assessed tasks; Project report Laboratory assessment and projects
	(iv) Numeracy	
Manipulate and sort data to generate new data sets.	Problem-solving classes, research projects.	Computer-based exercises, written assignments, poster displays, oral
Manipulate and present data in alternative formats to create deeper	Problem-solving classes, research projects.	presentations.
	(v) Team working	
Work collaboratively as part of a team undertaking a range of different team roles.	Tutorials, masterclasses, project supervision, induction programmes.	Learning logs/diaries, learning portfolios, group projects, simulation exercises.
	(vi) Problem solving	
Solve problems through the integration of knowledge of mathematics, science, information technology, design, business context and engineering practice.	Project supervision, lectures, tutorials, example sheets, simulation exercises, laboratory based exercises, computer- based exercises, independent research projects, group projects.	Individual research projects, oral presentations, project reports, problem-
Select & analyse appropriate evidence to solve non-routine problems. Use systematic analysis and design methods to solve problems in unfamiliar situations.	As above	based examinations, practical demonstrations.
Use creativity and innovation to solve problems. Apply standard management techniques to plan and allocate resources to projects.	As above A	
	(vii) Information handling	
Select and apply scientific evidence based methods in the solution of problems.	Lectures, tutorials, example sheets, simulation exercises, laboratory based exercises, computer-based exercises, independent research projects, group projects.	Individual research projects, oral presentations, project reports, problem-based examinations, practical demonstrations.
Search for information related to design solution, evaluate it and suggest requirements for additional information. Work with limited or contradictory information.	As above	
	(viii) Skills for lifelong learning	
Demonstrate knowledge and understanding of the professional and ethical responsibilities of an engineer.	Work placement, simulation exercises, independent research.	Simulation exercises, reports, independent projects.
Learn independently and understand new concepts in the discipline readily.	Independent research projects, group research projects,.	Independent project report, learning logs/diaries, learning portfolios.
Develop and implement personal plan of work to meet a deadline. Identify the critical activities within a personal plan of work.	Independent research projects, group research projects.	Independent project report, learning logs/diaries, learning portfolios

Explore career development	Masterclasses, learning portfolios,	Learning portfolios
opportunities.		

10. Progression points:

Minimum assessment levels are outlined with each module specification as set out in <u>Senate</u> <u>Regulation 5</u>. Additional progression criteria include:-

- Students must pass the English language modules in year 1, which cannot be carried into year 2, in order to be able to demonstrate the ability to learn and study in English.
- In order to ensure sufficient professional ability within engineering laboratories, management and design in line with the programme outcomes and the expectations of the accreditation body (Engineering Accreditation Board) students must pass each of the following modules including EG1006, EG2004 and EG2006 for which there are no opportunities for reassessment. These modules have an additional attendance requirement wherein students may not be absent for more than 25% of the schedule laboratory classes. Additional "catch-up" sessions will be provided for students for whom non-attendance has been mitigated.

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

<u>Transfer between different degrees:</u> Students not satisfying the UoL progression requirements may be allowed to transfer onto DUT programmes. Students satisfying the UoL progression requirements may be allowed to transfer to the University of Leicester campus-based BSc Chemistry degree programme, subject to capacity and physical resource limitations on the UoL campus.

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> <u>Regulation 5</u>.

12. Special features:

Programme delivered entirely in English, UK-style facilities provided on Panjin campus, Small group tutorials via video conferencing, group problem solving, research based projects, problem based learning, Reflect lecture capture.

13. Indications of programme quality

All of the current BEng courses are accredited by the appropriate professional engineering institutions. It is our intention to seek accreditation from the EAB for this BEng Mech Eng programme during the next accreditation review.

14. External Examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for the in-house BEng Mechanical Engineering programme can be found <u>here</u>.

Appendix 1: Programme structure (programme regulations) (overleaf)

Appendix 2: Module specifications

Appendix 3: Skills matrix

APPENDIX 1 Programme structure

BEng M	lechanical En	gineering		
FIRST Y		ES		
		SEMESTER 1		
Core Mo	odules			Credits
	EL0002	ENGLISH FOR GENERAL ACADEMIC PURPOSES		45
	EG0280	ADVANCED MATHEMATICS I		15
			Semester Total	60
Additio	onal Non-Cred	it Bearing Modules		
		MORAL CULTIVATION AND BASIC LAW		
		PHYSICAL EDUCATION I		
		MILITARY THEORY AND TRAINING		
		SEMESTER 2		
Core Mo	odules			Credits
	EL0005	ENGLISH FOR SPECIFIC ACADEMIC PURPOSES		15
	EG0281	ADVANCED MATHEMATICS II		15
	EG0282	MECHANICAL ENGINEERING FOUNDATION		15
	EG0283	ELECTRONIC AND ELECTRICAL ENGINEERING FOUNDATION		15
			Semester Total	60
Additio	onal Non-Cred	it Bearing Modules		
		CHINESE MODERN CONTEMPORARY HISTORY AND SITUATION POLICY		
		PHYSICAL EDUCATION II		
		DUT GENERAL OPTIONAL MODLE I		
		SEMESTER 3		
Additio	onal Non-Crec	lit Bearing Modules		
		COLLEGE STUDENT MENTAL HEALTH AND HEALTH EDUCATION		
SECONI	D YEAR MOD	ULES VEAR LONG		
	EG1006			30
	101000	SEMESTER 1		50
	Core Mod	ules		
	EG1201	ELECTRICAL AND ELECTRONIC ENGINEERING		30
	EG1280	ENGINEERING MATHEMATICS I		15
			Semester Total	60
Additio	onal Non-Crec	lit Bearing Modules		
	XX1001 PRIN	ICIPLE OF MARXISM AND THEORY OF SOCIALISM		
	XX0006 ENG	INERRING WORKSHOP TRAINING		
		SEMESTER 2		
Core Mo	odules			Credits
	EG1101	MECHANICAL ENGINEERING		30
	EG1281	ENGINEERING MATHEMATICS II		15
			Semester Total	60
Additio	onal Non-Crec	lit Bearing Modules		
	XX1005 DUT	GENERAL OPTIONAL MODULE II		
		SEMESTER 3		
Additio	onal Non-Cred	lit Bearing Modules		

ON-SITE ENGINEERING VISTING PRACTICE

Student Effort on EG1006 is split approximately 15:15 credits sem1:sem2 to give even loading.

THIRD YEAR MODULES			
	SEMESTER 1		
Core Modules			
EG2111	MATERIALS & STRUCTURES		
EG2302	SYSTEM DYNAMICS AND CONTROL		
EG2121	MATERIALS PROCESSING		
EG2112	DYNAMICS & THERMOFLUIDS		
		Semester Total	
Additional Non-Cred	it Bearing Modules		

Credits

60

Semester Total

DUT GENERAL OPTIONAL MODULE III

SEMESTER 2

Core Modules		Credits
EG2004	ENGINEERING EXPERIMENTATION AND ANALYSIS	15
EG2006	INTEGRATED ENGINEERING DESIGN	30
EG2122	APPLIED ENGINEERING THERMODYNAMICS	15

Additional Non-Credit Bearing Modules

PROCESS MACHINERY AND EQUIPMENT PROCESS PRINCIPLE AAND EXPERIMENT I

SEMESTER 3

Additional Non-Credit Bearing Modules

PRODUCTION PRACTICAL

FOURTH YEAR MODULES

SEMESTER 1

Core Modules			Credits
EG3124	TRIBOLOGY IN ENGINEERING DESIGN		15
EG3313	STATE VARIABLE CONTROL		15
EG3008	ENGINEERING MANAGEMENT		15
EG3112	HEAT TRANSFER AND ENERGY SYSTEMS		15
Optional Module	s		
Choose 1	5 credits from:		
EG3111	FINITE ELEMENT ANALYSIS AND DESIGN		15
EG3125	RIGID-BODY & STRUCTURAL DYNAMICS		15
EG3422	AEROSPACE MATERIALS & STRUCTURES		15
		Semester Total	75

SEMESTER 2

Core Modules			Credits
EG3323	DIGITAL CONTROL & ACTUATORS		15
EG3005	FINAL YEAR PROJECT		30
		Semester Total	45

Additional Non-Credit Bearing Modules

CAREER DEVELOPMENT

APPENDIX 2 Module Specification

Date created/amended: 08/03/2017 Last amended by: E G Hope

EL0002

2 English for General Academic Purposes

Year	2017/18
Level	0
Period	Sem1
Occurrence	Р
Spanning Years Y/N?	Ν
Credits	45
Department	ELTU
Module Coordinator	James Lambert
Pre-requisites*	
Co-requisites*	
Excluded combinations*	
Module Mark Scheme	Undergraduate
Minimum Assessment Level (UG only)	Honours level

Student Workload			
Lectures			
Seminars	224.00		
Tutorials	1.00		
Project Supervision			
Demonstration			
Practical Classes and Workshops			
Supervised time in lab/studio/workshop			
Fieldwork			
External Visits			
Work Based Learning			
Guided Independent Study	225.00		
Placement			
Year Abroad			
TOTAL MODULE HOURS	450.00		

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Speaking Test	20			0.3	
Listening Test	20			0.6	
Reading Test	20			1	
Writing Test	20			1	
Project Essay	20				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Demonstrate that they can discuss their ideas orally in English with	Speaking Test, Listening Test
other students and staff.	
Demonstrate that they can express themselves appropriately in writing	Project Essay, Writing Test
Demonstrate that they can use English language sources in their written and spoken assignments appropriately referenced and without plagiarism.	Project Essay, Writing Test, Listening Test
Demonstrate that they can acquire knowledge gained through research and independent study in English and apply that knowledge.	Reading Test, Writing Test, Project Essay
Demonstrate that they can choose their own aims and work outside class to achieve them.	Project Essay

Teaching and Learning Methods

Methodology

Methods:

Students will be engaged in student centred Communicative Language Teaching classroom practice which will facilitate learning and acquisition of language and language skill competencie

Students will be engaged in activities which will simulate modes of learning and assessment used in their chosen degree such as problem based learning and report writing.

-Individual contributions to open class

-Pair and small group work

-Task Based Learning situations

-Process Writing approach

Learner Training

Students will be engaged in skills and tools that will make them better language learners in and out of clas

-Analysing discourse and recognising valuable features, lexis and structures

-Managing and recording their learning

-Exploring online and paper-based resources to assist their learnin

-Peer evaluation and reflection

Loop input

Activity content will relate to the values and expectations of UK-type university stud, such as critical thinking, plagiarism and independent study.

The Language and Skills syllabus will focus on generic features of academic language, skills and study modes

The Learner Trianing syllabus will offer students opportunities to identify and acquire academic language, skills and other features specific to their chosen field of study.

Guided Independent Study: Indicative Activities

PDP journal Contribution to online discussions Completion of online tasks

Date created/amended: 08/03/2017 Last amended by: E G Hope

EL0005

English for Specific Academic Purposes

Year	2017/18
Level	0
Period	Sem2
Occurrence	Р
Spanning Years Y/N?	Ν
Credits	15
Department	ELTU
Module Coordinator	James Lambert
Pre-requisites*	
Co-requisites*	
Excluded combinations*	
Module Mark Scheme	Undergraduate
Minimum Assessment Level (UG only)	Honours level

Student Workload	
Lectures	
Seminars	74.00
Tutorials	1.00
Project Supervision	
Demonstration	
Practical Classes and Workshops	
Supervised time in lab/studio/workshop	
Fieldwork	
External Visits	
Work Based Learning	
Guided Independent Study	75.00
Placement	
Year Abroad	
TOTAL MODULE HOURS	150.00

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Presentation Assessment	30			0.3	
Portfolio of Coursework	50				
Classroom Contribution	20				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Demonstrate that they can discuss techchnical and scientific ideas orally in English with other students and staff.	Classroom Contribution
Demonstrate that they can express themselves appropriately in technical and scientific writing.	Portfolio of Coursework
Demonstrate that they can use English language sources and material from other coursework in their written and spoken assignments appropriately referenced and without plagiarism.	Presentation Assessment; Portfolio of Courseworkt
Demonstrate that they can acquire knowledge gained through research and independent study in English and apply that knowledge.	Presentation Assessment; Portfolio of Course work; Classroom Contribution
Demonstrate that they can choose their own aims and work outside class to achieve them.	Presentation Assessment

Teaching and Learning Methods

Methodology

Methods:

Students will be engaged in student centred Communicative Language Teaching classroom practice which will facilitate learning and acquisition of language and language skill competencie

Students will be engaged in activities which will simulate modes of learning and assessment used in their chosen degree such as problem based learning and report writing.

-Individual contributions to open class

-Pair and small group work

-Task Based Learning situations

-Process Writing approach

Learner Training

Students will be engaged in skills and tools that will make them better language learners in and out of clas

-Analysing discourse and recognising valuable features, lexis and structures

-Managing and recording their learning

-Exploring online and paper-based resources to assist their learnin

-Peer evaluation and reflection

Loop input

Activity content will relate to the values and expectations of UK-type university stud, such as critical thinking, plagiarism and independent study.

The Language and Skills syllabus will focus on generic features of academic language, skills and study modes The Learner Trianing syllabus will offer students opportunities to identify and acquire academic language, skills and other features specific to their chosen field of study

Guided Independent Study: Indicative Activities

PDP journal Contribution to online discussions Completion of online tasks

Date created/amended: Sep 2017 Last amended by: Jingzhe Pan

TOTAL MODULE HOURS

150.00

EG0280 Advanced Mathematics I

Year	2017/8	Student Workload	
Level	0	Lectures 55.	
Period	Sem1	Seminars	
Occurrence	X	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	5.00
Module Coordinator	Prof J Pan	Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	90.00
Minimum Assessment Level (UG only)	Honours Level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (Final)	100			2	

Mapping of Intended Learning Outcomes, including transferable skills, against Ass	essment Methods	
On successful completion of the module, students should be able to:		
Intended Learning Outcome	How Assessed	
After completing this module students should be able to:	Examination	
 Carry out basic calculations with fractions and decimals 		
 Carry out basic algebraic manipulations 		
 Solve algebraic equations 		
 Use elementary functions, trigonometric functions, exponential and 		
logarithms		
Differentiate elementary functions using the basic rules of calculus		
 Integrate elementary functions using the basic rules of calculus 		
 Find maxima and minima 		
 Sketch graphs of simple functions 		
 Find areas and volumes of simple geometrical objects 		

Teaching and Learning Methods

Lectures, example problems, formative marked work, group problem solving classes & VLE directed activities

Guided Independent Study: Indicative Activities

Directed reading, set problems, group problem solving exercises, formative quizzes

Date created/amended: Mar 2018 Last amended by: Jingzhe Pan

EG0281 Advanced Mathematics II

Year	2017/8	Student Workload	
Level	0	Lectures	60.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	4.00
Module Coordinator	Ioannis Kyriakopoulos	Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	86.00
Minimum Assessment Level (UG only)	Honours Level	Placement	
		Year Abroad	
		TOTAL MODULE HOURS	150.00

Assessment Element	Percentage Split	Qualifying	Alternative	Examination	Due Date
		Mark*	Reassessment*	Duration (hrs)	(DL only)*
Examination (Final)	100			2	

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
After completing this module students should be able to:	Examination
 Carry out advanced algebraic manipulations 	
• Use functions and their inverses	
 Use elementary functions, trigonometric functions, exponential and logarithms 	
 Differentiate functions involving exponentials and logarithms 	
 Differentiate using the product, quotient and chain rules 	
 Integrate trigonometric functions 	
 Calculate volumes of rotation 	
Manipulate vectors	
• Use the binomial theorem	

Teaching and Learning Methods

Lectures, example problems, formative marked work, group problem solving classes & VLE directed activities

Guided Independent Study: Indicative Activities

Directed reading, set problems, group problem solving exercises, formative quizzes

Date created/amended: Mar 2018 Last amended by: Jingzhe Pan

EG0282

Mechanical Engineering Foundation

Year	2017/18	Student Workload	
Level	0	Lectures	60.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	14.00
Module Coordinator	Ioannis Kyriakopoulos	Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	76.00
Minimum Assessment Level (UG only)	Honours Level	Placement	
		Year Abroad	
		TOTAL MODULE HOURS	150.00

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Coursework	30				
PBL project	15				
Examination	55			2	
Resit Examination	100		Yes	2	

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Int	ended Learning Outcome	How Assessed
Aft	er completing this module students should be able to:	
•	Describe the nuclear, atomic, chemical and elastic properties of materials.	Coursework, PBL project, Examination
•	Explain properties of solids, liquids and gases.	
٠	Describe the motion of particles and bodies subject to forces.	
٠	Model and solve simple problems involving Newton's laws of motion.	
•	Describe various forms of energy.	
٠	Explain the behavior of a system subject to conservation of energy.	

Teaching and Learning Methods

Lectures, example problems, formative marked work, group problem solving classes.

Guided Independent Study: Indicative Activities

Directed reading, set problems, group problem solving exercises, formative quizzes

Date created/amended: Mar 2018 Last amended by: Jingzhe Pan

EG0283 Electrical and Electronic Engineering Foundation

Year	2017/8	Student Workload	
Level	0	Lectures	36.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	12.00
Module Coordinator	Ioannis Kyriakopoulos	Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	102.00
Minimum Assessment Level (UG only)	Honours Level	Placement	
		Year Abroad	
		TOTAL MODULE HOURS	150.00

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Coursework	30				
PBL project	15				
Examination	55			2	
Resit Examination	100		Yes	2	

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
After completing this module students should be able to:	
• Describe the electromagnetic spectrum and basic quantum mechanical concepts	Coursework, PBL project, Examination
• Explain the behaviour a particle subject to the influence of magnetic and electric fields	
 Discuss and apply the Kirchov's laws to electric circuits. 	
 Model and solve simple problems involving Coulomb's law 	

Teaching and Learning Methods

Lectures, example problems, formative marked work, group problem solving classes.

Guided Independent Study: Indicative Activities

Directed reading, set problems, group problem solving exercises, formative quizzes

300.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG1006 Engineering Design and Experimentation

Year	2018/19	Student Workload	
Level	1	Lectures	15.00
Period	Year Long	Seminars	4.00
Occurrence	Р	Tutorials	6.00
Spanning Years Y/N?	Ν	Project Supervision	
Credits	30	Demonstration	4.00
Department	Engineering	Practical Classes and Workshops	148.00
Module Coordinator		Supervised time in lab/studio/workshop	23.00
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	100.00
Minimum Assessment Level (UG only)	Honours Level	Placement	_
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Design assignment programme	45				
Attendance at manufacture demonstration (final)	5		-		
Laboratory logbook	30				
Laboratory formal report 1	10		-		
Laboratory formal report 2	10				
Re-assessment assignment	100		Yes		

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Describe different stages of engineering design process and their inter- dependencies and apply appropriate techniques and tools used in	Design assignments consisting of group and individual assingments on design process and CAD
product design and development, e.g. market survey, prioritised	activities.
requirement list, objective tree, functional problem decomposition,	
specification list, evaluation of concept designs.	
Design practical solutions to engineering problems and use Computer	Design assignments
Aided Design to convey information about mechanical and electrical	Attendance at manufacturing demonstrations
components and circuits to applicable International Standards based	
on awareness of basic manufacture techniques	
Conduct mechanical and electrical experiments and basic	Laboratory logbook

computational modelling investigations relevant to engineering,	
including accurate record keeping and logbook use, estimation of error	
and uncertainty and demonstration of basic coding skills.	
Write technical reports of experimental and/or computational	Formal laboratory reports
investigations, presenting data to professional standards and	
comparing experiment and theory.	
Demonstrate professional transferrable skills in a practical engineering	Completion of formal assessment elements above
context and engage with personal and professional development	
activities.	

Teaching and Learning Methods

Lectures, supervised laboratory and design workshops, Matlab computation classes, Manufacture demonstration (mechanical, electrical and systems), tutorials, induction and career development workshops.

Guided Independent Study: Indicative Activities

Directed laboratory pre-reading and supporting materials, set problems, group problem based learning, formative quizzes, preparation of formal reports, careers-based reflective task. Online Matlab study.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG1201 Electrical and Electronic Engineering

Year	2018/19
Level	1
Period	Sem1
Occurrence	P
Spanning Years Y/N?	Ν
Credits	30
Department	Engineering
Module Coordinator	
Pre-requisites*	
Co-requisites*	
Excluded combinations*	
Module Mark Scheme	Undergraduate
Minimum Assessment Level (UG only)	Honours level

Student Workload			
Lectures	82.00		
Seminars			
Tutorials			
Project Supervision			
Demonstration			
Practical Classes and Workshops	22.00		
Supervised time in lab/studio/workshop			
Fieldwork			
External Visits			
Work Based Learning			
Guided Independent Study	196.00		
Placement			
Year Abroad			
TOTAL MODULE HOURS	300.00		

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination	80	40		3	
VLE assignment 1	10				
VLE assignment 2	10				
Examination	100		Yes	3	

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Describe and explain the basic principles underlying Electronic and	VLE assignment and examination.
Electrical Engineering encompassing Electromagnetism, Electrical	
Circuits, Analogue and Digital Electronics and Radio Communications.	
Demonstrate an analytical knowledge of the different types of problem	VLE assignment and examination.
encountered in the field of Electrical and Electronic Engineering and	
an ability to identify the theory required to solve them.	
Apply basic EM theory that determines the operational characteristics	VLE assignment and examination.
of electromagnetic devices.	
Interpret data and perform a wide range of simple calculations across	VLE assignment and examination.

the fields of Electromagnetism, Electrical Circuits, Analogue and	
Digital Electronics and Digital Communications	

Teaching and Learning Methods

Lectures, examples workshops, examples sheets.

Guided Independent Study: Indicative Activities

Directed reading, example problems. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG1280 Engineering Mathematics I

Year	2018/19	Student Workload	
Level	1	Lectures	48.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	24.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	78.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	- ·	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	80			2	
VLE assignment	20				
Examination	100		Yes	2	

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Demonstrate the basic principles related to functions of many variables, including partial differentiation, vector calculus, and vector integrals.	VLE assignment and examination.
Solve problems involving linear algebra concepts such as vectors, matrices, linear independence, solution of linear systems, eigenvalues and eigenvectors	VLE assignment and examination.
Solve simple PDEs using numerical methods in their solution	VLE assignment and examination.

Teaching and Learning Methods

150.00

Lectures, example classes, VLE self-assessment coursework, intensive maths workshops

Guided Independent Study: Indicative Activities

Directed reading, example problems. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: Feb 2017

Last amended by: Jingzhe Pan

EG1101 Mechanical Engineering

	1		
Year	2018/19	Student Workload	
Level	1	Lectures	82.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	30	Demonstration	
Department	Engineering	Practical Classes and Workshops	22.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	196.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	1	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination	80	40		3	
VLE assignment 1	10				
VLE assignment 2	10				
Examination	100		Yes	3	
	-	<u> </u>	-		

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Articulate an understanding of the basic principles of solid mechanics,	VLE assignments and exam
fluid statics and dynamics and thermodynamics underlying Mechanical	
and Aerospace Engineering	
Demonstrate an analytical understanding of the different types of	VLE assignments and exam
problem encountered in Mechanical Engineering and an ability to	
identify and apply the theory required to solve them	
Interpret data and perform fundamental design calculations across the	VLE assignments and exam
fields of material properties, structural mechanics, fluid mechanics,	
thermodynamics and heat transfer.	

300.00

Teaching and Learning Methods

Lectures, example classes

Guided Independent Study: Indicative Activities

Directed reading, example problems. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG1281 Engineering Mathematics II

Year	2018/19	Student Workload	
Level	1	Lectures	48.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	24.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	78.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	80			2	
VLE assignment	20				
Examination	100		Yes	2	

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Solve problems involving linear algebra concepts such as eigenvalues	VLE assignment and examination.
and eigenvectors.	
Demonstrate the basic principles related to probability theory,	VLE assignment and examination.
mathematical statistics and data analysis	
Solve problems involving statistics concepts such as sampling,	VLE assignment and examination.
estimation of parameters and hypotheses testing.	

Teaching and Learning Methods

150.00

Lectures, example problems, formative marked work, group problem solving classes & VLE directed activities

Guided Independent Study: Indicative Activities

Directed reading, example problems. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2111 **Materials and Structures**

Year	2019/20	Student Workload	
Level	2	Lectures	33.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

TOTAL MODULE HOURS

UNIVERSITY OF LEICESTER

150.00

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Define the mechanical material properties that are used in the	Examination, Coursework.
analysis, modelling and design of static mechanical systems and	
compare different groups of engineering materials on the basis of	
these properies.	
Explain the strengthening mechanisms relevant to materials used in	Examination, Coursework.
advanced mechanical and aerospace structures.	
Derive performance metrics to enable the selection of appropriate	Examination, Coursework.
materials for a variety of different engineering applications.	
Analyse the loading on a selection of typical engineering structural	Examination, Coursework
elements (including pressure vessels) using common failure criteria to	
determine their strength in yield, brittle fracture and buckling.	
Apply stress intensity methods to the solution of fracture problems;	Examination, Coursework
fatigue laws, including compensations for non-zero mean stresses, to	
predict the fatigue life of engineering components.	

Teaching and Learning Methods

Lectures, examples workshops, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2112 Dynamics and Thermofluids

Year	2019/20	Student Workload	
	2013/20		
Level	2	Lectures	33.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	· ·	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

150.00

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Define main motion descriptors (position, velocity and acceleration) for	Examination, Coursework.
solid bodies, whose motion can be represented as those of particles,	
as well as the relation between such descriptors in the following	
coordinate systems: cartesian, polar and normal and tangential.	
Recognise and correctly apply Newton's laws, principle of work and	Examination, Coursework.
energy, principle and conservation of (linear and angular) impulse and	
momentum and conservation of energy to engineering applications.	
Distinguish the different responses associated with single degree-of-	Examination, Coursework.
freedom vibrating systems (free and forced responses) and explain the	
infleunce of key parameters, such as damping ratio, natural frequency	
and initial conditions.	
Explain the physical content and implications of the second law of	Examination, Coursework
thermodynamics, including entropy, the Carnot and Brayton cycles and	
thermal efficiency, applying these to solve engineering problems.	
Evaluate the effects of fluid motion for a viscous internal and external	Examination, Coursework
flows, including the definition and calculation of the effects of boundary	
layers.	

Teaching and Learning Methods

Lectures, examples workshops, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2121 Materials Processing

Year	2019/20	Student Workload
Level	2	Lectures
Period	Sem1	Seminars
Occurrence	P	Tutorials
Spanning Years Y/N?	N	Project Supervision
Credits	15	Demonstration
Department	Engineering	Practical Classes and Workshops
Module Coordinator		Supervised time in lab/studio/workshop
Pre-requisites*		Fieldwork
Co-requisites*		External Visits
Excluded combinations*		Work Based Learning
Module Mark Scheme	Undergraduate	Guided Independent Study
Minimum Assessment Level (UG only)	Honours level	Placement
		Year Abroad

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	85			2	
Industrial visit assignment	15				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

TOTAL MODULE HOURS

33.00

11.00

8.00

98.00

150.00

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Describe the fundamental interactions between microstructure and	Examination.
processing in the determination of the mechanical properties of	
engineering materials.	
Describe the major classes of engineering materials (metals, ceramics,	Examination.
polymers, elastomers, glasses and hybrids) in terms of their structure,	
characteristic properties and the ways in which they are processed to	
produce engineering components.	
Analyse the process of phase change using phase diagrams,	Examination.
thermodynamics and kinetics.	
Analyse the influence of carbon content, heat treatments and other	Examination.
alloying elements on the properties of steels.	
Describe key engineering manufacturing processes, explain the	Examination, Industrial visit assignment
resulting affect on microstructure and properties and select appropriate	
manufacturing approaches for engineering components.	

Teaching and Learning Methods

Lectures, example classes, formative coursework activity, Industrial visit. Students who are unable to participate in the industrial visit will be provided with generic data to complete the assignment.

Guided Independent Study: Indicative Activities

Directed reading, example problems and preparing for, and completing industrial practice activity. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2302 System Dynamics and Control

Year	2019/20	Student Workload	
Level	2	Lectures	49.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	90.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	· ·	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	70			2	
Intermediate class exercise	30				
Examination	100		Yes	2	

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

150.00

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Define the basic properties of the Laplace transform, and apply it to	Intermediate class exercise, Examination.
describe signals and solve ordinary differential equations.	
Formulate simple models of mechanical and electrical systems based	Intermediate class exercise, Examination.
on physical principles.	
Analyse the dynamical properties of a SISO (Single-Input Single-	Intermediate class exercise, Examination.
Output) dynamical system described by a continuous-time transfer	
function	
Discuss the performance specifications of feedback control loops in	Examination.
terms of stability, and robustness in the face of modelling	
uncertainties.	
Design a simple feedback loop both using the root locus method and	Examination.
the frequency domain approach.	

Teaching and Learning Methods

Lectures and example classes, intermediate coursework assessment.

Guided Independent Study: Indicative Activities

Directed reading, example problems. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

UNIVERSITY OF LEICESTER

300.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2006 Integrated Engineering Design

Year	2019/20	Student Workload	
Level	2	Lectures	14.00
Period	Sem2	Seminars	4.00
Occurrence	Р	Tutorials	4.00
Spanning Years Y/N?	N	Project Supervision	
Credits	30	Demonstration	
Department	Engineering	Practical Classes and Workshops	132.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	146.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Design, build and test project (final)	70				
Financial calculation assignment	10				
Business simulation performance	20				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Perform as a member of an effective interdisciplinary engineering team	Design, build and test project
throughout the lifecycle of a project right from application to join the	(incorporating assessment of CV/application,
team through to post-testing evaluation of the product, including	presentations and peer-assessment)
reflecting on their own learning and development.	
Conceive-design-implement-operate complex engineering systems in	Design, build and test project
an interdisciplinary team using appropriate supporting engineering	(incorporating assessment of Reports, poster,
analysis and considering the trade-off between cost, quality and	interviews, performance of designs)
environmental performance.	
Analyse financial results to determine the health of an engineering	Financial calculation assignment
business and the success of business strategies and plans	
Produce, implement and continuously improve a sustainable business	Business simulation performance (financial,
strategy in a simulated business environment relevant to an	management reports and presentation).
engineering product	
Present engineering and business results professionally both verbally	Design, build and test project
and in writing, demonstrating the ability to discuss and defend	Business simulation performance.
professional judgements in the context of producing an engineering	
product which is an optimum business solution.	

Teaching and Learning Methods

Lectures, design classes, computing and hardware practical classes, presentations, simulated CV application, interview and assessment centre-style group activity session, tutorials and general induction sessions.

NOTE: The nature of the assessment in this module is that it is not normally possible for the assessment to be re-taken, therefore failure of the module means termination of a student's course.

Guided Independent Study: Indicative Activities

Design, build and test; business simulations; group problem based learning.

150.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2004 Engineering Experimentation and Analysis

Year	2019/20	Student Workload	
Level	2	Lectures	
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	
Module Coordinator		Supervised time in lab/studio/workshop	60.00
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	90.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Lab exercises and reports	70				
Formal Report 1	15				
Formal Report 2 (final)	15				
Reassessment Report	100		Yes		

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Plan and conduct experimental work, and analyse experimental data	Laboratory notebooks, laboratory reports
(using appropriate statistical and theoretical methods).	
Perform quantitative error analyses based on errors in measurements	Laboratory notebooks, laboratory reports
and from other sources, and use these to evaluate the significance of	
experimental findings.	
Discuss experimental results in the context of relevant background	Laboratory notebooks, laboratory reports
theory and engineering applications.	
Demonstrate an ability to write concise, professional, technical	Laboratory reports
engineering reports of the standard expected in industry.	
Transferable Skills: written communication; problem solving;	Laboratory notebooks, laboratory reports
information handling	

Teaching and Learning Methods

Laboratory practical classes, computer practical classes

Guided Independent Study: Indicative Activities

Pre-reading/lab preparation activities. Analysis of experimental data using appropriate computational methods; preparation of laboratory reports.

150.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG2122 Applied Engineering Thermodynamics

Year	2019/20	Student Workload	
Level	2	Lectures	33.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	- ·	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Identify, describe and analyse gas, vapour and combined thermodynamic cycles used for power generation and transport applications, including Otto, Diesel and Rankine cycles.	Examination and Coursework.
Identify and describe major features of different refrigeration and heat pump cycles used for industrial applications.	Examination and Coursework.
Describe exergy, which is the maximum useful work, and perform exergy analysis of closed and open thermodynamic systems.	Examination and Coursework.

Teaching and Learning Methods

Lectures, examples workshops, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3008 Engineering Management

Year	2020/21	Student Workload
Level	3	Lectures
Period	Sem1	Seminars
Occurrence	Р	Tutorials
Spanning Years Y/N?	Ν	Project Supervision
Credits	15	Demonstration
Department	Engineering	Practical Classes and Workshops
Module Coordinator		Supervised time in lab/studio/workshop
Pre-requisites*		Fieldwork
Co-requisites*		External Visits
Excluded combinations*		Work Based Learning
Module Mark Scheme	Undergraduate	Guided Independent Study
Minimum Assessment Level (UG only)	Honours Level	Placement
		Year Abroad

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
VLE Assignment 1	15				
VLE Assignment 2	15				
VLE Assignment 3	15				
VLE Assignment 4	15				
Project Management Report (Final)	40				
Re-assessment assessment	100		Yes		

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

TOTAL MODULE HOURS

30.00 15.00

4.00

101.00

150.00

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Discuss the key principles and tools of project management in the context of their application to an engineering project	Project Management Report
Use commercial standard project management software tools for all PM activities	Project Management Report
Distinguish the key concepts of Health, Safety & Environmental performance and Product / Cost Management and apply these to an engineering activity	Project Management Report, VLE assignments.
Distinguish the key concepts and terminology of People Management and undertake reflective review of their own development.	Project Management Report, VLE assignments.
Distinguish the key concepts and terminology of Business Management, Law and Quality Management as applied to engineering projects	VLE assignments

Teaching and Learning Methods

Project management lectures and workshops.

Lectures on Engineering Management topics assessed via VLE assignments.

Guided Independent Study: Indicative Activities

Project management activities conducted on individual project.

Independent study and reflection based on: lecture notes, personal work experience, current news, library and internet sources, etc

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3111 Finite Element Analysis and Design

Year	2020/21
Level	3
Period	Sem1
Occurrence	P
Spanning Years Y/N?	Ν
Credits	15
Department	Engineering
Module Coordinator	
Pre-requisites*	EG2111
Co-requisites*	
Excluded combinations*	
Module Mark Scheme	Undergraduate
Minimum Assessment Level (UG only)	Honours level

Student Workload	
Lectures	33.00
Seminars	
Tutorials	
Project Supervision	
Demonstration	
Practical Classes and Workshops	11.00
Supervised time in lab/studio/workshop	
Fieldwork	
External Visits	
Work Based Learning	
Guided Independent Study	106.00
Placement	
Year Abroad	
TOTAL MODULE HOURS	150.00

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Define and derive the finite element analysis (FEA) method for solving common engineering problems discussing the advantages and disadvantages.	Examination, Coursework.
Undertake hand calculations of stuctural elements that include effects such as shear deformation of beams and torsion of open sections to validate FEA simulations.	Examination, Coursework.
Solve linear elastic, static problems using FEA, explaining and assessing the assumptions used.	Examination, Coursework.
Use FEA to design engineering structures, including selecting appropriate materials and structure dimensions to withstand the applied loads	Examination, Coursework

Teaching and Learning Methods

Lectures, example classes, Formative coursework activity, design case studies.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

150.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3112 Heat Transfer and Energy Systems

Year	2020/21	Student Workload	
Level	3	Lectures	33.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Use analytical and finite-difference methods to find solutions of	Examination, Coursework.
steady/unsteady conduction problems;	
Evaluate free and forced and convective heat transfer problems	Examination, Coursework.
applicable to engineering components, including the effect of	
turbulence, the concepts of pool boiling and the implications of critical	
heat flux.	
Determine gas mixture and gas-vapour mixture properties; perform	Examination, Coursework.
thermodynamic analysis of reacting systems.	
Describe the main features of different energy system components	Examination, Coursework
such as heat exchangers, boilers, pumps, fans and valves; select	
components for relevant applications and undertake basic design and	
sizing of these devices.	
Identify and describe renewable and unconventional energy sources	Examination, Coursework
and explain the operation of energy conversion technologies used for	
these sources.	

Teaching and Learning Methods

Lectures, examples workshops, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3124 Tribology in Engineering Design

Year	2020/21
Level	3
Period	Sem1
Occurrence	Р
Spanning Years Y/N?	Ν
Credits	15
Department	Engineering
Module Coordinator	
Pre-requisites*	EG2111
Co-requisites*	
Excluded combinations*	
Module Mark Scheme	Undergraduate
Minimum Assessment Level (UG only)	Honours level

Student Workload			
Lectures	33.00		
Seminars			
Tutorials			
Project Supervision			
Demonstration			
Practical Classes and Workshops	11.00		
Supervised time in lab/studio/workshop			
Fieldwork			
External Visits			
Work Based Learning			
Guided Independent Study	106.00		
Placement			
Year Abroad			
TOTAL MODULE HOURS	150.00		

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Qualitatively describe typical surface characterisation techniques and	Examination, Coursework.
their uses in engineering; assumptions and limitations of Hertzian	
contact mechanics and common non-Hertzian effects; the processes	
by which damage is incurred during typical wear mechanisms in	
engineering systems.	
Derive mathematical models of common wear mechanisms.	Examination, Coursework.
Application of Hertzian contact mechanics in determining stress and	Examination, Coursework.
pressure distributions in simple geometric contacts and an ability to	
select an appropriate contact model for a variety of engineering	
systems; friction principles to predict the performance of clutch and	
brake assemblies; common empirical techniques in the prediction of	
bearing life; understanding of lubrication regimes to recommend	
supply pressures and predict minimum film thicknesses in conformal	
and non-conformal contacts.	

Application of sound mechanical, materials and tribological understanding in: the selection of bearings for a variety of engineering applications; recommending appropriate surface engineering solutions for a variety of applications.	Examination, Coursework
Analyse tribological systems in terms of relevant surface and material characteristics, contact geometry, relative motion, operating environment and lubrication mechanisms, and recommend appropriate friction control and wear prevention strategies.	Examination, Coursework

Teaching and Learning Methods

Lectures, examples sheets, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

150.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

Rigid Body and Structural Dynamics EG3125

Year	2020/21	Student Workload		
Level	3	Lectures	33.00	
Period	Sem1	Seminars		
Occurrence	Р	Tutorials		
Spanning Years Y/N?	Ν	Project Supervision		
Credits	15	Demonstration		
Department	Engineering	Practical Classes and Workshops	11.00	
Module Coordinator		Supervised time in lab/studio/workshop		
Pre-requisites*	EG2112	Fieldwork		
Co-requisites*		External Visits		
Excluded combinations*		Work Based Learning		
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00	
Minimum Assessment Level (UG only)	Honours level	Placement		
	- 1	Year Abroad		

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Explain, demonstrate and apply concepts of linear and angular	Examination, Coursework.
momenta in engineering dynamics, discussing the motion of a system	
of particles subject to internal and external forces.	
Use the principles of kinetics of rigid bodies to formulate relevant	Examination, Coursework.
mathematical models and to be able to choose appropriate methods to	
solve engineering problems.	
Use Finite Element Analysis (FEA) models to explain the behaviour of	Examination, Coursework.
engineering structures subject to dynamic loading.	
Use the formulation of analytical and numerical methods to solve	Examination, Coursework
advanced problems in engineering dynamics.	
Analyse vibrations of multiple degree-of-freedom systems in practical	Examination, Coursework
engineering contexts.	

Teaching and Learning Methods

Lectures, examples classes, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3313 State Variable Control

Year	2020/21	Student Workload	
Level	3	Lectures	33.00
Period	Sem1	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	N	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
		Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Define and discuss the basic properties of dynamical systems in state	Examination, Coursework.
space form, and formulate simple state-space models of electrical or	
mechanical systems based on physical principles.	
Apply the concept of linearisation to obtain local linear models of	Examination, Coursework.
nonlinear systems.	
Analyse the essential characteristics of a control system, including	Examination, Coursework.
asymptotic stability, controllability and observability.	
Design state feedback controllers and state observers, based on pole	Examination, Coursework
placement and on optimal control/filtering methods.	
Apply basic functionalities of the control software package Matlab in	Examination, Coursework
control system analysis and design.	

150.00

Teaching and Learning Methods

Lectures, examples classes, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes..

150.00

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3422 Aerospace Materials and Structures

Year	2020/21	Student Workload		
Level	3	Lectures	33.00	
Period	Sem1	Seminars		
Occurrence	Р	Tutorials		
Spanning Years Y/N?	Ν	Project Supervision		
Credits	15	Demonstration		
Department	Engineering	Practical Classes and Workshops	11.00	
Module Coordinator		Supervised time in lab/studio/workshop		
Pre-requisites*		Fieldwork		
Co-requisites*		External Visits		
Excluded combinations*		Work Based Learning		
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00	
Minimum Assessment Level (UG only)	Honours level	Placement		
		Year Abroad		

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Explain the interaction of microstructure, processing and properties of	Examination, Coursework.
light and high temperature alloys (e.g. Al, Ti and Ni alloys) used in	
airframe and aircraft propulsion components.	
Select and critique the choice of materials in critical aerospace	Examination, Coursework.
components and structures.	
Describe and propose materials solutions to the practical aerospace	Examination, Coursework.
design challenges of aeroelasticity, fatigue and corrosion.	
Undertake design calculations, selecting and justifying material	Examination, Coursework
constituents, forms and manufacturing processes for composite	
laminates and sandwich panels.	
Describe the functionality and physical mechanisms applied in	Examination, Coursework
common 'smart' or 'multifunctional' materials and critique their	
aerospace applications.	

Teaching and Learning Methods

Conventional and flipped teaching sessions incorporating active learning, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3323 Digital Control and Actuators

Year	2020/21	Student Workload	
Level	3	Lectures	33.00
Period	Sem2	Seminars	
Occurrence	Р	Tutorials	
Spanning Years Y/N?	Ν	Project Supervision	
Credits	15	Demonstration	
Department	Engineering	Practical Classes and Workshops	11.00
Module Coordinator		Supervised time in lab/studio/workshop	
Pre-requisites*		Fieldwork	
Co-requisites*		External Visits	
Excluded combinations*		Work Based Learning	
Module Mark Scheme	Undergraduate	Guided Independent Study	106.00
Minimum Assessment Level (UG only)	Honours level	Placement	
	- ·	Year Abroad	

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Examination (final)	90			2	
Engagement with coursework	10				

TOTAL MODULE HOURS

150.00

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Analyse the properties of a dynamical system that includes digital	Examination, Coursework.
and/or sampled elements	
Discuss the performance specifications of computer controlled	Examination, Coursework.
feedback loops	
Design a simple feedback loop in a discrete time framework	Examination, Coursework.
Assess the operation of simple electro-mechanical and hydraulic	Examination, Coursework
actuators in a computer controlled system	

Teaching and Learning Methods

Lectures and example classes, formative coursework activity.

Guided Independent Study: Indicative Activities

Directed reading, example problems and completing formative coursework activities. Modules may also include activities such as pre-reading for flipped teaching sessions, group problem based learning, viewing screencasts or podcasts and computer simulation or online activities or quizzes.

Date created/amended: April 2018

Last amended by: Jingzhe Pan

EG3005 Individual Project

Year	2020/21	Student Workload
Level	3	Lectures
Period	Sem2	Seminars
Occurrence	Р	Tutorials
Spanning Years Y/N?	Ν	Project Supervision
Credits	30	Demonstration
Department	Engineering	Practical Classes and Workshops
Module Coordinator		Supervised time in lab/studio/workshop
Pre-requisites*		Fieldwork
Co-requisites*		External Visits
Excluded combinations*		Work Based Learning
Module Mark Scheme	Undergraduate	Guided Independent Study
Minimum Assessment Level (UG only)	Honours level	Placement
		Year Abroad

Assessment Element	Percentage Split	Qualifying Mark*	Alternative Reassessment*	Examination Duration (hrs)	Due Date (DL only)*
Technical Achievement	40				
Project Report (Final)	40				
Presentation	20				
Resit Assignment	100		Yes		

TOTAL MODULE HOURS

Mapping of Intended Learning Outcomes, including transferable skills, against Assessment Methods

On successful completion of the module, students should be able to:

Intended Learning Outcome	How Assessed
Complete a project integrating engineering knowledge and skills	Technical Achievement
obtained throughout the undergraduate course	
Write a final report on the project work, reflecting on achievements and	Final project report
judging the quality of the outcomes.	
Give a formal seminar presentation on the project outcomes.	Presentation

22.00

278.00

300.00

Teaching and Learning Methods

Each student is assigned a project supervisor, with whom they will have weekly meetings to provide feedback on progress and suggestions for future work. A project proposal and plan will be submitted 3 weeks after the project starts. The final report will be submitted at the end the semester. All students will do individual presentation on their project work.

The project must be passed at honours level for the award of an accredited BEng degree. Students who fail the project will be required to submit an alternative project report (on a topic which does not require practical work).

Guided Independent Study: Indicative Activities

Students will be expected to work independently for most of the time, reporting on progress weekly. Depending on the subject of the project, activities might include materials testing in the department's labs, writing software, researching, creating and analysing simulation models, designing hardware for manufacture.

Appendix 3: Skills matrix for Engineering Degrees

The table below shows the modules and other activities in which particular skills are developed and/or assessed. Skills that are generic to engineering work (e.g communicating by means of drawing conventions) feature in many modules, but are shown below where they are a principal focus of a module.

Skills Matrix: H300 BEng in Mech Eng													
Date amended: 13 March 2017													
Programme Learning Outcomes	0002,EL0005 (English)	0282; EG0283 (Fund)	1006 (Design & Exp)	1101 (Mech Eng)	1201 (E E E)	2006 (Design & Man)	2004(Exp & Analysis)	3008 (Management)	3005 (Project)	th modules group	terials & Struct Group	ntrol & Sig Proc group	ərmo &fluids group
	EL	EG	EG	EG	EG	EG	EG	EG	EG	Ma	Ma	Co	The
(a) Discipline specific knowledge													
(vi) Other discipline specific													
competencies													
Select and conduct appropriate experimental procedures, using appropriate test and measurement			X				X		X				
equipment.			v			v			v		v		
Design products, processes or systems, as appropriate to the choice of degree and options, showing awareness of relevant issues such as manufacturing, operation, safety, economy, environmental implications.			X			Χ			Χ		Χ		
Read and produce relevant types of engineering drawings and diagrams in accordance with standard conventions.			X			X			X				
Operate and communicate	Χ	X				X		X	X				
effectively as an engineer.													
(b) Transferable skills												 	
(i) Oral communication													
Present and discuss technical information orally, in appropriate forms for given audiences.	X	X	X			X	X		X				
(ii) Written communication													
Report and discuss engineering work such as tests, calculations and designs in a form appropriate to the intended recipient, with appropriate use of scientific terminology and style			X			X	X		X				
51910.	1	1	1	1	I	1	1	1	1	l I	1	1	

(iii) Information technology													
Use a broad range of common IT tools such as word-processor, spreadsheets, email, file transfer and the web.	X	X	X	X	X	X	X	X	X	X	X	X	X
Use engineering IT tools and software where appropriate.			X			X		X	X	X	X		
(iv) Numeracy													
Manipulate and sort data to extract useful information.		X	X	Х	Х	X	X	X	X	X	X	X	X
Judge the degree of accuracy appropriate to solving problems and presenting results		X	X	X	X	X	X	X	X	X	X	X	X
(v) Team working													
Work collaboratively as part of a team undertaking a range of different team roles.	X	X				X		X					
(vi) Problem solving													
Solve problems through the integration of knowledge of mathematics, science, information technology, design, business context and engineering practice									X				
Use creativity and innovation in the									x				
solution of problems.													
Identify the key aspects of a problem and use estimates and approximations in its solution.									X				
(vii) Information handling													
Identify information that would be useful in specific design or project tasks; search for, assess, filter and communicate it.			X			X	X	X					
(viii) Skills for lifelong learning													
Learn independently and expand their knowledge and understanding of their discipline, using the mathematical and other knowledge gained during the course.		X				X	X		X				
Assess own skills and abilities; identify and address weaknesses and opportunities.		X				X	X		X				

Math modules group: EG0280, EG0281, EG1280, EG1281

Materials & Structure modules group: EG1101, EG2111, EG2121, EG3111, EG3124, EG3125, EG3422

Thermo & fluids modules group: EG1101; EG2112; EG2122; EG3112;

Control & signal processing modules group: EG2302; EG3313; EG3323