

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

Date created: 02/11/2022Last amended: 25/04/2025Click or tap here to enter text.

Version no. 1 Date approved by EQED:

1. Programme title(s) and code(s):

BSc Creative Computing (G452)

BSc Creative Computing with a Year in Industry (G452)

BSc Creative Computing with a Year Abroad (G452)

Cert HE Creative Computing*

Dip HE Creative Computing*

Notes

* An award marked with an asterisk is only available as an exit award and is not available for students to register onto.

a) HECOS Code

HECOS Code	%
100368	100%

b) UCAS Code (where required)

G452

2. Awarding body or institution:

University of Leicester

3. a) Mode of study

Full-time

b) Type of study

Campus-based

4. Registration periods:

BSc Creative Computing

The normal period of registration is 3 years

The maximum period of registration 5 years

BSc Creative Computing with a Year in Industry / Year Abroad

The normal period of registration is 4 years

The maximum period of registration 6 years

5. Typical entry requirements

A-levels: BBB

Two AS-levels considered in place of one A-level. General Studies accepted.

BTEC: DDM

No specific subjects at A-level or BTEC are required, but it is expected that students will have a mix of "arts" and "sciences" qualifications. Where there is a uniform qualifications profile (i.e. all sciences or all arts), the personal statement will be examined for evidence of sustained and credible activity in the under-represented side. This should include evidence of computing, programming or web skills, creative or artistic ability.

6. Accreditation of Prior Learning

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case basis and subject to the general provisions of the University APL policy.

7. Programme aims

The BSc Creative Computing programme aims to allow students to:

- understand the ways in which creativity and enterprise are shaping digital technologies;
- place creative thinking at the heart of technological developments;
- improve computer technologies to support human creativity;
- experience an intellectually challenging and stimulating curriculum that draws on the research expertise of staff in the department and associated enterprise partners;
- develop the flexibility and adaptability necessary to respond effectively in a dynamic world;
- develop an appetite and ability to be an independent entrepreneur and life-long learner;
- apply creative computing skills within different discipline areas;
- have confidence and expertise in the interconnected areas of computing, creativity and business;
- be able to solve problems by applying a rigorous yet creative approach;
- develop the foresight and prescience to anticipate new technological developments and their impact;
- acquire team working and presentation skills.

It will equip students to:

- create original software applications and projects both individually and in collaboration;
- understand the design process and its potential applications;
- flourish in the rapidly changing digital economy;
- work across disciplines and in different contexts;
- solve real-world problems in a creative way;
- develop in-depth knowledge and understanding of specialised areas of creative computing;
- be technically competent in relevant areas of the arts and humanities;
- understand the theory and concepts that underpin creativity and computing;
- embrace the wider social and cultural context for creative computing; and
- undertake research and development in both academic and professional situations.

In addition, for the "with a Year in Industry" variants:

 provide students with an experience of the application of creative computing and professional skills in an industrial environment and to reinforce knowledge through its use in different environments.

In addition, for the "Year Abroad" variants:

- enable students to gain experience of Creative Computing in an international perspective;
- develop students' working knowledge of a language other than English; and
- provide students with an environment that will encourage a thoughtful and mature approach to all aspects of study and life, creating graduates with broad experiences and horizons.

8. Reference points used to inform the programme specification

- QAA Benchmarking Statement <u>Art and Design</u>
- QAA Benchmarking Statement <u>Business and Management (2023)</u>
- QAA Benchmarking Statement <u>Computing (2022)</u>
- IEEE and ACM Joint Task Force <u>Computer Science Curricula (2013</u>)
- <u>University of Leicester Education Strategy</u>
- University of Leicester Periodic Developmental Review Report

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

Date created: 02/11/2022Last amended: 25/04/2025Click or tap here to enter text.

Version no. 1 Date approved by EQED:

9. Programme Outcomes

Unless otherwise stated, programme outcomes apply to all awards specified in 1. Programme title(s).

a) Discipline specific knowledge and competencies

i) Mastery of an appropriate body of knowledge

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Recall</i> and <i>describe</i> key issues in creative computing.	Demonstrations. Essay. Feedback. GIS. Laboratories. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning log. Blog post. Computer-based test. Concept map. Coursework. Demonstration. Essay. Essay plan. Exam. Field report. Instant reports (using a template). Literature review. Portfolio. Presentation. Reflective journal. Report.
<i>Define</i> creative problems that may be solved with appropriate knowledge of computing.	Computer-based practicals. Coursework. Feedback. GIS. Laboratories. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Business plan. Concept maps. Coursework. Demonstrations. Essays. Essay plans. Exams. Installations. Performances. Portfolios. Presentations. Products. Project works. Reflective journals. Role play.
<i>Explain</i> the role that creative computing plays in the success of modern business and research projects.	Demonstrations. Essays. Feedback. Field trips. GIS. Lectures. Presentations. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Blog posts. Business plan. Computer-based tests. Coursework. CV. Demonstrations. Essays. Essay plans. Exams. Field reports. Instant reports (using a template). Literature reviews. Portfolios. Presentations. Products. Project works. Reflective journals. Reports.
Year abroad: <i>demonstrate</i> understanding of the core of an appropriate foreign language	Lectures, language laboratories and learning abroad.	University report.

ii) Understanding and application of key concepts and techniques

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Explain</i> and <i>apply</i> knowledge of key creative computing techniques to solve real- world problems.	Computer-based practicals. Coursework. Demonstrations. Feedback. GIS. Laboratories. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Web-based learning materials. Workshops.	Annotated learning logs. Blog posts. Business plan. Computer-based tests. Concept maps. Coursework. Demonstrations. Essays. Essay plans. Exams. Field reports. Installations. Literature reviews. Portfolios. Presentations. Products. Project works. Reflective journals. Reports. Role play.
<i>Apply</i> creative thinking to specify, design, implement and test creative computing applications.	Coursework. Demonstrations. Feedback. GIS. Laboratories. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Concept maps. Coursework. Demonstrations. Installations. Instant reports (using a template). Performances. Portfolios. Presentations. Products. Project works. Reflective journals. Reports.
<i>Explain</i> and <i>apply</i> suitable design processes and methodologies, to determine strategies for innovation in creative computing.	As above	As above
<i>Apply</i> tools and techniques to efficiently <i>collaborate</i> with others to <i>plan</i> and <i>execute</i> a project	As above	As above
Year abroad: Demonstrate an ability to communicate some aspects of Creative Computing in a foreign language	Lectures and language laboratories	University report.

iii) Critical analysis of key issues

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Analyse client/customer problems, requirements and criteria, and hence plan an appropriate yet innovative solution strategy.	Coursework. Feedback. GIS. Laboratories. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Business plan. Coursework. Demonstrations. Literature reviews. Portfolios. Presentations. Project works.
Critically <i>analyse</i> aesthetic, commercial, sociocultural, legal and ethical issues in creative computing.	As above	Computer-based tests. Essays. Essay plans. Exams. Field reports. Literature reviews. Presentations. Project works. Reports.
<i>Evaluate</i> accurately creative computing systems, processes and products.	As above	As above

iv) Clear and concise presentation of material

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Present</i> information in a variety of forms, chosen to maximise reader/audience impact and understanding, such as reports, dissertations, seminars, posters, websites, games, blogs, podcasts, exhibitions, performances, videos and other current media technologies.	Coursework. Demonstrations. Feedback. GIS. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Blog posts. Concept maps. Coursework. Creative Writing. Demonstrations. Field reports. Installations. Instant reports (using a template). Performances. Portfolios. Presentations. Products. Project works. Reports.

v) Critical appraisal of evidence with appropriate insight

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Perform practical <i>testing</i> , technical <i>analysis</i> and critical <i>evaluation</i> of design ideas in laboratory or through simulation.	Computer-based practicals. Coursework. Demonstrations. Feedback. GIS. Laboratories. Projects. Tutorials. Workshops.	Computer-based tests. Coursework. Demonstrations. Essays. Essay plans. Exams. Instant reports (using a template). Literature reviews. Presentations. Products. Project works. Reports.
<i>Create</i> and <i>design</i> new processes or products to fulfil a specified requirement through synthesis of ideas from a wide range of sources.	As above.	As above.
Take account of industrial and commercial constraints when <i>applying</i> creative computing techniques.	As above.	As above.

vi) Other discipline specific competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Describe</i> the purpose and benefits of different approaches to creative computing.	Feedback. GIS. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Blog posts. Coursework. Essays. Exams. Field reports. Literature reviews. Presentations. Project works. Reports.
<i>List</i> and <i>compare</i> software tools for analysing and visualising data.	Lectures, Computer laboratories, Group Project work, Independent project work, GIS, Feedback, Project supervision.	As above

b) Transferable skills

i) Oral communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Respond</i> to technical questions with accurate and concise answers. <i>BSc only</i> .	Demonstrations. Feedback. GIS. Laboratories. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Demonstrations. Presentations. Project works. Role play.
Demonstrate fluent and sustained scientific, technical and business communication. BA only.	As above	As above
Year abroad: Demonstrate core oral communication skills in a foreign language	Lectures and language laboratories.	University report.

ii) Written communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Write concise and accurate summaries of creative, computing and scientific knowledge, and solutions to problems, in a variety of different formats. BA only.	Essays. Feedback. Lectures. GIS. Seminars. Tutorials. Web-based learning materials.	Annotated learning logs. Blog posts. Business plan. Creative Writing. Essays. Essay plans. Exams. Field reports. Instant reports (using a template). Literature reviews. Reflective journals. Reports.
Produce properly structured, clear, advanced technical reports. BSc only.	As above	Annotated learning logs. Blog posts. Business plan. Field reports. Instant reports (using a template). Literature reviews. Reflective journals. Reports.
Year abroad: Demonstrate core written communication skills in a foreign language.	Lectures, tutorials, language laboratories	University report

iii) Information technology

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Compare</i> between a broad range of software and IT tools, and choose these appropriately.	Computer-based practicals. Coursework. Demonstrations. Feedback. GIS. Laboratories. Lectures. Projects. Seminars. Study groups. Tutorials. Workshops.	Computer-based tests. Coursework. Demonstrations. Instant reports (using a template). Literature reviews. Portfolios. Presentations. Products. Project works. Reports.
Understand and articulate the limitations of Information Technology, especially in creative situations. BA only	Coursework. Demonstrations. Feedback. Field trips. GIS. Laboratories. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Blog posts. Business plan. Coursework. Demonstrations. Exams. Field reports. Instant reports (using a template). Literature reviews. Portfolios. Presentations. Products. Project works. Reflective journals. Reports.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Explain</i> the rules and principles that relate to computation and data processing. <i>BSc only</i> .	Coursework. Demonstrations. Feedback. GIS. Laboratories. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Business plan. Coursework. Demonstrations. Essays. Essay plans. Exams. Instant reports (using a template). Literature reviews. Presentations. Project works. Reflective journals. Reports.

iv) Numeracy

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use of a wide range of analytical and graphical methods	Computer-based practicals. Coursework. Feedback. GIS. Laboratories. Lectures. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Computer- based tests. Coursework. Exams. Instant reports (using a template). Portfolios. Presentations. Products. Project works. Reports.
Manipulate and present data in alternative formats to create deeper understanding or greater impact.	As above	As above

v) Team working

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Work effectively as part of a team, organise roles and manage time, undertake assigned tasks, and ensure completion of a team project. Identify strengths and weaknesses of team members.	Coursework. Feedback. GIS. Laboratories. Lectures. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Business plan. Coursework. CV. Demonstrations. Performances. Portfolios. Presentations. Project works. Reflective journals. Role play.

vi) Problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Solve</i> a variety of small and large problems through the integration of knowledge of creativity, computing and business.	Computer-based practicals. Coursework. Demonstrations. Feedback. GIS. Lectures. Presentations. Projects. Seminars. Tutorials. Workshops.	Annotated learning logs. Business plan. Concept maps. Coursework. Demonstrations. Exams. Installations. Instant reports (using a template). Performances. Portfolios. Presentations. Products. Project works. Reports.
<i>Describe</i> a systematic approach to analysing and solving creative problems and apply these to new problems.	As above	As above

vii) Information handling

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
<i>Demonstrate</i> a broad understanding of problems and issues that arise in creative computing.	Coursework. Feedback. Field trips. GIS. Laboratories. Lectures. Projects. Seminars. Study groups. Tutorials. Workshops.	Annotated learning logs. Blog posts. Coursework. Essays. Exams. Field reports. Literature reviews. Portfolios. Presentations. Project works. Reflective journals. Reports.
<i>Conduct</i> significant background research and literature surveys, and <i>summarise</i> content from information sources.	Coursework. Essays. Field trips. GIS. Lectures. Projects. Seminars. Study groups. Tutorials. Web-based learning materials.	Blog posts. Coursework. Demonstrations. Essays. Essay plans. Literature reviews. Project works. Reports.
Gather and <i>evaluate</i> information to independently gain new knowledge.	GIS, Project Supervision, Feedback	Individual and group project reports.

viii) Skills for lifelong learning

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate knowledge and understanding of professional and ethical issues, and aspects of the law, in the context of creative computing.	Computer-based practicals. Coursework. Demonstrations. Essays. Feedback. Field trips. GIS. Lectures. Presentations. Projects. Seminars. Study groups. Tutorials. Workshops.	Coursework. Essays. Exams. Field reports. Reflective journals. Reports. Role play.
<i>Demonstrate</i> independence and time management skills.	Coursework. Feedback. GIS. Projects. Workshops.	Business plan. Coursework. CV. Project works. Psychometric tests. Reflective journals. Reports. Role play.
<i>Engage</i> in extra and co- curricular activities to develop career-relates skills.	Coursework. Feedback. Field trips. GIS. Projects. Web-based learning materials. Workshops.	Blog posts. Business plan. Coursework. Creative Writing. CV. Field reports. Portfolios. Project works. Psychometric tests. Reflective journals. Reports. Role play.

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

Date created: 02/11/2022 Click or tap here to enter text.

Last amended: 25/04/2025

Version no. 1 Date approved by EQED:

10. Progression points

This programme follows the standard Scheme of Progression set out in <u>Senate Regulations</u> – see the version of Senate Regulation 5 governing undergraduate programmes relevant to the year of entry.

The following modules have restrictions on the assessment components that can be reassessed:

CO3202 -

Please refer to the module specification for full details.

a) Year Abroad

The Year Abroad variant of this programme is offered in accordance with the University's standard specification for year abroad programme variants.

b) Year in Industry

The Year in Industry variant of this programme is offered in accordance with the University's standard specification for year in industry programme variants.

11. Criteria for award and classification

This programme follows the standard scheme of undergraduate award and classification set out in Senate Regulations – see the version of Senate Regulation 5 governing undergraduate programmes relevant to the year of entry.

12. Special features

While this programme provides the skills and knowledge required to work within the creative industries or research, it provides a foundational knowledge of creativity, computing and business that will allow students to graduate into a wide range of roles.

Assessment items include: coursework, such as designs, models, software, reports, interviews, presentations, websites, seminars; portfolios, including installations, websites, performances, artworks, software, games, etc.; instant reports, written quickly using a template; team essays, cowritten by the group; concept maps; blog posts; reflective journals; business plans; literature reviews; role play; and products, alongside more familiar traditional types of assessment.

The University recognises that undertaking a work placement as part the programme of study can enhance career prospects and provide added value, and as such this programme includes a 'year in industry' variant.

By experiencing real-world scenarios and applying skills and knowledge to a professional environment, students can gain a unique insight into how their studies can be utilised in industry. This will not only showcase their abilities to future employers but will also enhance their studies upon returning to university to complete your programme.

To understand the special features for year in industry undergraduate programme variants, this programme specification should be read in conjunction with the programme specification content which can be found here. This outlines details including programme aims, support, progression and duration.

12a. Research-inspired Education

Students on this programme will advance through the four quadrants of the University of Leicester Research-inspired Education Framework as follows:

RiE Quadrant	Narrative
	While this programme provides the skills and knowledge required to work within the creative industries or research, it provides a foundational knowledge of creativity, applied computing and business that will allow students to graduate into a wide range of roles.
Research- briefed Bringing staff research content into the curriculum.	<i>Research-briefed:</i> Students will be exposed to a number of programming languages and paradigms (Java, Python,) all of which are actively being used in research, as well as in industry. For each programming language, the students will be shown, and taught, its most common applications. Students will be introduced to a range of advanced subjects such as data analytics, big data, and machine learning that reflect the research expertise of the School.
Research- based Framed enquiry for exploring existing knowledge.	<i>Research-based:</i> During computer labs, students will have an opportunity to put their problem-solving and research skills in practice by solving problems with applications in the creative industry, with machine learning, AI, and working with 2D/3D animations.
Research- oriented Students critique published research content and process.	<i>Research-oriented:</i> Students will be able to search information effectively, and organise and present information in the form of an IT literature survey. Students will also have the opportunity to evaluate the outcomes of a project, including social, legal and ethical considerations.
Research- apprenticed Experiencing the research process and methods; building new knowledge.	<i>Research-apprenticed:</i> Students will work in groups and individually to produce complete pieces of software, be it a VR/AR game demo, an app, or more. Students will then have the opportunity to present their work and process, and be challenged on choices that were made throughout the development of the project.

As part of studying at a research-intensive university, students on this programme have the following extra or co-curricular opportunities available to them to gain exposure to research culture:

The School helps organise multiple Hackathons during the academic year where the students can come together and collaboratively work or build new software. These Hackathons often have industrial partnerships and collaborators, for example IBM and Capital One. Students are informed and invited to participate in these events via emails.

Throughout term, subject specific career drop-in sessions are scheduled (and added to the students' timetable), in order for students to find out more about the subject and research specific paths in Computer Science.

Embedded throughout modules, students can also achieve the Leicester Award Gold that supports them in their future career.

The computer science department organises weekly seminars, inviting presenters from other universities to showcase their research. These seminars are of open access to all students, both on campus and via Teams.

Teaching on this programme will be research-informed (it draws consciously on systematic inquiry into the teaching and learning process itself) in the following way:

The School supports all staff involved in teaching to gain an accredited Higher Education teaching qualification, in which they demonstrate their use of teaching theory to support their own practice and reflect on their current teaching and continuing professional development.

All module convenors are part of teaching pods, which group similar fields together. These pods are designed to provide a forum for discussion between teaching-focussed and teaching/research staff, and as a way for more experienced staff to support others by, for example, peer observation and feedback. This provides a platform for staff to share considerations and observations of their teaching experience and obtain research-based input.

Teaching staff meet once a year for a 'Teaching Away Day', which gives the opportunity to discuss some key issues in depth with the other members within the teaching pods, and shared with everyone. This gives a chance to share ideas and experience, and to identify questions that need answers.

Additionally, the staff within the creative computing group has monthly meetings in order to discuss the teaching and research updates and outcomes.

13. Indications of programme quality

- The programme will be subject to standard University of Leicester procedures for quality assessment, including Annual Developmental Review, Periodic Developmental Review, Quality Office review, liaison with College Academic Committee, and the programme will report to the departments' Learning and Teaching Committees.
- An External Examiner will be appointed according to Senate regulations 7.18-7.60.
- There will be systematic, regular evaluation by students registered with the programme, including anonymous evaluation of sessions and modules. Representatives from this programme will be appointed to the Student Staff Committee meetings within the Informatics department.
- The programme's teaching staff will engage with University procedures for peer assessment of teaching and marking.

14. External Examiner(s) reports

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found at <u>exampapers@Leicester</u> [log-in required].

Programme Specification (Undergraduate) FOR ENTRY YEAR: 2025/26

Date created: 02/11/2022Last amended: 25/04/2025Version no. 1 Date approved by EQED: Click or tap here to enter text.

Appendix 1: Programme structure (programme regulations)

The University regularly reviews its programmes and modules to ensure that they reflect the current status of the discipline and offer the best learning experience to students. On occasion, it may be necessary to alter particular aspects of a course or module.

BSc Creative Computing

Updates to the programme

Academic year affected	Module	Update
2026/27	CO2114 Foundations of Artificial Intelligence	Was core, now optional
2026/27	CO2104 User Interface Design and Evaluation	Was optional, now core

Level 4/Year 1 2025/26

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	45 credits
Optional	n/a	n/a	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Semester 1	CO1101	Computing Fundamentals	15 credits
Semester 1	CO1102	Programming Fundamentals	15 credits

Delivery period	Code	Title	Credits
Semester 1	CO1110	Digital Arts Lab	15 credits
Semester 1	CO1111	Creativity and Computing	15 credits
Semester 2	CO1109	Business and Financial Computing	15 credits
Semester 2	CO1112	Games and Gamification	15 credits
Semester 2	CO1113	Ideation and Design	15 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
Semester 2	MN1024	Managing Digital Technologies	15 credits
Semester 2	CO1105	Introduction to Object-Oriented Programming	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Level 5/Year 2 2026/27

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Semester 1	CO2102	Databases and Domain Modelling	15 credits
Semester 1	CO2109	SciArt & Big Data Visualisation	15 credits
Semester 1	CO2111	Developmental Computing	15 credits
Semester 2	CO2108	Concurrent Design	15 credits
Semester 2	CO2113	Entertainment Tech & Design	15 credits
Semester 2	CO2104	User Interface Design and Evaluation	15 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
Semester 1	EN2070	Using Stories	15 credits
Semester 1	MS2018	Digital Storytelling	15 credits
Semester 1	MN2133	Equal, Diversity and Inclusion in Organisations	15 credits
Semester 2	CO2114	Foundations of Artificial Intelligence	15 credits
Semester 2	MS2005	Working in the Creative Industries	15 credits

Notes

Choose one option in each semester.

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Level 6/Year 3 2027/28

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	30 credits	15 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	CO3202	Entrepreneurial Project	45 credits
Semester 1	CO3101	Computers, Society and Professionalism	15 credits
Semester 1	CO3104	Computational Creativity	15 credits
Semester 2	CO3107	Emerging Technologies	15 credits

Notes

N/A

Option modules

Delivery period	Code	Title	Credits
Semester 1	CO3102	Mobile and Web Applications	15 credits
Semester 1	MS3004	Global Cultures	15 credits
Semester 1	NT3100	Sustainability Enterprise Project	15 credits
Semester 2	CO3110	Independent Study	15 credits
Semester 2	CO3103	Technology Management	15 credits
Semester 2	MN3019	Advertising and Consumer Culture	15 credits

Choose one option in each semester

Notes

NT3100 can only be chosen through Online Module Selection. Students cannot choose it after OLMS has closed.

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc CREATIVE COMPUTING WITH A YEAR ABROAD

First and Second Year Modules

As for the first- and second-year of the BSc degree in Creative Computing.

Third Year Modules

The third year will be spent abroad taking approved courses either in an institution associated with the School of Computing and Mathematical Sciences via an ERASMUS bilateral agreement or in a university that has a Study Abroad exchange partnership agreement with the University of Leicester. Students will normally be required to complete the year and to reach a pass level of attainment in 60 credits of Computer Science modules. Failure to do so will result in the student reverting to the three year BSc Creative Computing degree. The marks awarded during the year abroad do not contribute to the final degree classification.

Note: Transfer will be confirmed only after successful completion of the first year.

Fourth Year Modules

As for the third-year of the BSc degree in Creative Computing.

BSc CREATIVE COMPUTING WITH A YEAR IN INDUSTRY

First and Second Year Modules

As for the first- and second-year of the BSc degree in Creative Computing.

Third Year Modules

- 1. Students will work within a sponsoring company for one year between 1 July of the second year of the course and the start of the following year.
- 2. During their one-year placement students will undertake a programme of training and work experience which will be agreed by the sponsoring company and the University.
- 3. Students will be expected to keep a logbook recording their training and experience that is to be presented for approval to the sponsoring company and the University.
- 4. Students will be issued with a *Certificate of Industrial Studies* indicating successful completion of their placement. Students who do not satisfactorily complete their industrial placement will be transferred to the B.Sc. Creative Computing degree.

The Year in Industry does not contribute to the final degree classification.

Fourth Year Modules

As for the third-year of the BSc degree in Creative Computing.

Appendix 2: Module specifications

See undergraduate module specification database [login required] (Note - modules are organized by year of delivery).