

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2025/26

Date created: Click or tap here to enter text. **Last amended:** 08/12/2024

Version no. 1

1. Programme title(s) and code(s)

BSc Chemistry

HECOS Code

HECOS Code	%
100417	100%

2. Awarding body or institution

University of Leicester

3. a) Mode of study

Full-time

b) Type of study

Campus-based in Panjin campus, Dalian University of Technology, PRC

4. Registration periods

The normal period of registration for the BSc is four years

The maximum period of registration for the BSc is six years

5. Typical entry requirements

All students that have followed the Chinese school and qualification system must be from the same Gaokao group (the top group out of four) as students entering other DUT undergraduate programmes. Students must also possess a sufficient level of English language to enable such students to undertake studies with the English language as the teaching medium.

For Year 1 entry, a Gaokao English language score of 70% for English language or an IELTS score of 5.0 will be required. After intensive English language teaching in Year 1, students will be required to demonstrate CEFR Level B2 in English language (otherwise IELTS 6.0).

6. Accreditation of Prior Learning

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to Year 2, on a case-by-case basis and subject to the general provisions of the University APL policy.

7. Programme aims

The programme aims:

- To provide a broad and in-depth understanding of ideas central to chemistry
- To provide students with direct experience of a UK-style degree programme
- To enhance and develop the students' English language skills
- To train students in the practical skills necessary for the safe manipulation of chemicals

- To generate interest in, and understanding of, the wider role of chemistry in society e.g. industry and commerce
- To enable students to develop independent learning skills as well as the experience of working as part of a team
- To stimulate intellectual development, develop powers of critical analysis and ability to solve problems
- To enhance written and oral communication skills
- To provide students with training in mathematical techniques and IT skills
- To introduce students to chemical research methodology through carrying out a research pro ject
- To introduce students to some topics of current chemical or chemical engineering research
- To equip students with the knowledge and generic skills for employment or further training in R&D, science-based industry and establishments, education, and for training at management levels in other professions.

8. Reference points used to inform the programme specification

- QAA Benchmarking Statement for Chemistry
- Framework for Higher Education Qualifications (FHEQ)
- UK Quality Code for Higher Education
- University Education Strategy
- University Assessment Strategy
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual)
- United Nations Education for Sustainable Development Goals
- Student Destinations Data

9. Programme Outcomes

Unless otherwise stated, programme outcomes apply to all awards specified in 1. Programme title(s).

a) Discipline specific knowledge and competencies

i) Mastery of an appropriate body of knowledge

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
recall and apply basic chemistry theory across all three main areas of chemistry (organic, inorganic and physical) and related mathematics	Lectures; Directed reading; Problem classes; Tutorials; Laboratory Practical Classes; Computer aided training.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work
solve structured and unseen model problems	Lectures; Directed reading; Problem classes; Tutorials; Laboratory Practical Classes; Computer aided training.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
conduct experiments and apply practical techniques.	Lectures; Directed reading; Problem classes; Tutorials; Laboratory Practical Classes; Computer aided training.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work
demonstrate detailed knowledge of selected topics in five areas of chemistry (analytical, chemical engineering, organic, inorganic and physical).	Lectures; Directed reading; Problem classes; Computer aided training; Project supervision	Written exams; assessed computer exercises; project assessment.

ii) Understanding and application of key concepts and techniques

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
apply chemical concepts in new situations e.g. ability to predict physical and chemical properties by comparison with analogues	Lectures; Directed Reading; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
apply logic and chemical knowledge to make deductions based on (limited) evidence	Lectures; Directed Reading; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
solve familiar and unfamiliar chemistry related problems	Lectures; Directed Reading; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
design, construct and undertake experiments	Lectures; Directed Reading; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
demonstrate professional use of standard equipment and knowledge of and application of safety procedures.	Lectures; Directed Reading; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.

iii) Critical analysis of key issues

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
critically appraise physical and chemical information, and discuss its limitations	Progressively through the programme, particularly in the 4th year. Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
summarise key findings of scientific papers	Progressively through the programme, particularly in the 4th year. Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
draw quantitative conclusions from sample data	Progressively through the programme, particularly in the 4th year. Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
critically assess and compare scientific theories	Progressively through the programme, particularly in the 4th year. Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.

iv) Clear and concise presentation of material

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
present scientific ideas, data and results in a variety of (appropriate) forms, e.g. reports, seminars, posters	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
use chemical software, e.g. drawing, molecular modelling	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
participate in scientific discussion and debate.	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.

v) Critical appraisal of evidence with appropriate insight

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
discuss and implement experimental methodology	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
collect and critically analyse data	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
draw valid inferences from data	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
interrogate and discuss scientific literature.	Tutorials, Laboratory Practical Classes; Group projects; Problem classes; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.

vi) Other discipline specific competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
respond to questioning	Tutorials; Group project supervision; Project supervision	Tutorial work; project assessment.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
give a short seminar.	Tutorials; Group project supervision; Project supervision	Tutorial work; project assessment.

b) Transferable skills

i) Oral communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
In English, typical students should be able to:		
give reasoned arguments in response to chemical questions	Tutorials; Group work; Group project supervision; Project supervision	Tutorial work; Oral project presentations and examinations
give a short seminar on a chemical topic	Tutorials; Group work; Group project supervision; Project supervision	Tutorial work; Oral project presentations and examinations

ii) Written communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
In English, typical students should be able to:		
write abstracts, tutorial and problem class work, lab notebooks, lab reports and project dissertation	Lectures; Tutorials; Practical classes; Group work; Writing workshops; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; assessed essays; tutorial work; project assessment.
communicate scientifically.	Lectures; Tutorials; Practical classes; Group work; Writing workshops; Project supervision.	Assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; assessed essays; tutorial work; project assessment.

iii) Information technology

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
use mathematical packages for data analysis	Problem classes; Practical classes; Group work; Project supervision	Assessed practical work; assessed computer exercises; project assessment.
use spreadsheets, presentation and word processing facilities	Problem classes; Practical classes; Group work; Project supervision	Assessed practical work; assessed computer exercises; project assessment.
use scientific software packages, e.g. drawing or molecular modelling.	Problem classes; Practical classes; Group work; Project supervision	Assessed practical work; assessed computer exercises; project assessment.

iv) Numeracy

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
use analytical and graphical methods	Progressively throughout course.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
use calculus in Chemistry and Chemical Engineering	Progressively throughout course.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
analyse data	Progressively throughout course.	Written exams; assessed practical work, including lab samples, associated data, lab notebooks and reports; assessed computer exercises; assessed problems; tutorial work; project assessment.
solve numerical problems.	Progressively throughout course.	

v) Team working

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:	Group problem solving; Group projects; Project supervision	Group assessments (oral and written); project assessment.
discuss concepts and formulate plans working with peers	Group problem solving; Group projects; Project supervision	Group assessments (oral and written); project assessment.
organize time and tasks	Group problem solving; Group projects; Project supervision	Group assessments (oral and written); project assessment.
produce joint reports/presentations	Group problem solving; Group projects; Project supervision	Group assessments (oral and written); project assessment.
recognize individual strengths.	Group problem solving; Group projects; Project supervision	Group assessments (oral and written); project assessment.

vi) Problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
apply knowledge	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
analyse and solve familiar and unfamiliar problems	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.
plan and implement laboratory work and projects.	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.

vii) Information handling

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
describe and discuss the scientific method	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.
gather, retrieve, manipulate and analyse chemical data and information from a variety of sources including scientific journals and databases	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.
present data in appropriate forms.	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Computer aided learning; Project supervision.	Written exams; assessed practical work; assessed computer exercises; assessed problems; tutorial work; project assessment.

viii) Skills for lifelong learning

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Typical students should be able to:		
demonstrate understanding of the professional responsibilities of a chemist	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
develop their study and time management skills	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
learn independently	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
access and search scholarly articles and databases	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
retrieve information	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
analyse data	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
work in groups	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	
plan and implement group and individual activities.	Progressively through the programme, particularly in the 4th year.	Meeting deadlines; All assessment elements; Project assessment.
	Lectures; Problem Classes; Tutorials; Laboratory Practical Classes; Group projects; Computer aided learning; Project supervision.	

10. Progression points

This programme follows the standard Scheme of Progression set out in <u>Senate Regulations</u> – see the version of Senate Regulation 5 governing undergraduate programmes relevant to the year of entry.

The following additional progression requirements for this programme have been approved:

There are two progression points in each academic year: end of Semester 1 and end of Semester 2 of the DUT-DLI teaching calendar. A progression decision is made by the DLI Board of Examiners on the basis of the Semester 1 exam and resit results in March, on Semester 2 exams in July, and Semester 2 reassessment results in September.

At the Semester 1 progression point, if a student has already reached a point where it is not possible for them to progress to the next Year, the Board will make a progression decision regarding their outcome in line with the Regulations (typically either Repeat Year or Termination of Studies) and the student will be required to either suspend or end their studies immediately.

Students must pass the chemistry laboratory practical module CH1205, for which there are no opportunities for reassessment. This module has an additional attendance and completion requirement wherein students may not be absent for more than 10% of the scheduled laboratory classes (including submission of post-lab work). Additional "catch-up" sessions will be provided for students for whom non-attendance has been mitigated.

This module is not eligible for compensation and must be passed at 40.00%.

Students must pass the chemistry laboratory practical modules CH2284 and CH2285, for which there are no opportunities for reassessment, and which cannot be carried into the subsequent year. These modules have an additional attendance and completion requirement wherein students may not be absent for more than 10% of the scheduled laboratory classes (including submission of post-lab work). Additional "catch-up" sessions will be provided for students for whom non-attendance has been mitigated.

These modules are not eligible for compensation and must be passed at 40.00%.

Modules CH3851 and CH3852 must be passed for award. They are not eligible for compensation and must be passed at 40.00%. Reassessment opportunities on these modules are at the discretion of the Board of Examiners.

Progression from Year 1 to Year 2

The following additional progression requirements apply to Year 1 of the programme (equivalent to Leicester Foundation Year):

General

As the Year 1 of the DLI programme is below the level of entry for HE in the UK, a specific scheme of progression has been designed to ensure that students have evidenced required English language and academic capabilities to study the substantive element of the programme.

Year 1 of the DLI programme consists of courses in English for Academic Purposes (EAP), counting for 60 credits, and subject related theory courses counting for 60 credits, totalling 120 credits.

A minimum of 90 credits must be passed in Year 1 for progression to Year 2. Students who pass all 120 UoL credits in Year 1 will proceed to Year 2 of the DLI programme.

Students who fail any modules in Year 1 will be eligible for one re-sit of the assessment. The timing of this re-sit will depend on the semester in which the module is taught.

English for Academic Purposes (EAP Modules) (60 credits):

As DLI programmes are delivered in English, the EAP modules are pre-requisite for courses throughout Year 2-4 of the DLI programme. To progress between Year 1 and Year 2 of the DLI programmes, the DLI students are required to pass all the following language modules at the relevant pass mark (40.00%):

- EL0002
- EL0003
- EL0004
- EL0005

Compensated pass is not available for these modules.

FAIL EAP Modules: Resit EAP Modules

- Students who have failed to pass all the EAP modules can be offered ONE re-sit attempt at the next available re-sit opportunity.
- Students who pass the EAP modules at this stage and meet other progression requirements as set out below, will be permitted to proceed.

FAIL Re-Sit EAP Assessment: REPEAT Year

- Students who have failed EAP modules after one re-sit attempt, can be offered a Repeat Year of the Year 1 of the DLI programme in the subsequent academic year.
- Students who subsequently fail the resit EAP modules in a Repeat Year (after a reassessment attempt) will have their course of studies terminated.

Theory Modules (60 Credits)

The Theory Modules offered at Year 1 of the DLI programme are designed to provide the students with the technical skills and knowledge demanded for the relevant degree courses; and thus, the DLI students will be required to pass all Theory Modules in order proceed to the next level of the DLI programme.

A minimum of 90 credits must be passed in Year 1 for progression to Year 2. Students who pass all 120 UoL credits in Year 1 will proceed to Year 2 of the DLI programme.

- Students who have passed all the EAP modules (60 credits) and all the Theory Modules (60 credits) in Year 1, will proceed to Year 2 of the DLI programme.
- Students who have failed no more than 30 credits of non-prerequisite theory modules after a reassessment attempt will be permitted to proceed to Year 2 of the programme. The Board of Examiners may, at its discretion, offer a third and final attempt at any failed modules (progression from Year Two to Year Three will not be dependent on the outcome of this reassessment).
- Students who have failed no more than 30 credits, but have failed prerequisite theory
 modules after a reassessment attempt, will not be permitted to progress to Year 2 of the DLI
 programme and will be offered a Repeat Year. Students who subsequently fail a prerequisite
 theory module in a Repeat Year (after a reassessment attempt) will have their course of
 studies terminated.
- Theory modules that are pre-requisite for the Chemistry pathway are as follows:
 - CH0065+CH0066
- Students who have failed more than 30 credits of theory modules in the Year 1, following resit, will not be permitted to proceed on the programme, and will be offered a Repeat Year. Students who subsequently fail the resit theory modules in a Repeat Year (after a reassessment attempt) will have their course of studies terminated.

Transfer between different degrees:

Students not satisfying the UoL progression requirements may be allowed to transfer onto DUT programmes. Students satisfying the UoL progression requirements may be allowed to transfer to the University of Leicester campus-based BSc Chemistry degree programme, subject to capacity and physical resource limitations on the UoL campus.

c) Course transfers

n/a

11. Criteria for award and classification

This programme follows the standard scheme of undergraduate award and classification set out in <u>Senate Regulations</u> – see the version of *Senate Regulation 5 governing undergraduate programmes* relevant to the year of entry.

12. Special features

Programme delivered entirely in English with UK-style facilities provided on Panjin campus, Small group tutorials via simultaneous on-line classroom approaches, group problem solving, research-based projects, problem based learning.

12a. Research-inspired Education

Students on this programme will advance through the four quadrants of the University of Leicester Research-inspired Education Framework as follows:

RiE Quadrant	Narrative
	Our programme offers a solid foundation in fundamental inorganic, organic and physical chemistry topics. This, coupled with chemistry-focussed support in mathematics, critical thinking, problem solving and practical skills, provides a good foundation for the research-focussed modules and research project in later years. All of our modules are contextualised through real-world examples and application to solve modern challenges in: catalysis; medicine; materials; sustainability and biotechnology.
Research- briefed Bringing staff research content into the curriculum.	Research briefed – Students experience challenging and inspiring learning in classes informed by cutting-edge research. Our programme leverages the expertise of our two core research themes: <i>Chemistry for Health</i> and <i>Chemistry for a Sustainable Future</i> , along with other expertise from across the university. Our staff bring their research straight into the classroom, making learning exciting, relevant and highly contextualised to modern-day issues. Additionally, students are exposed to the research culture of the school from their very first year, with a particular highlight being a dedicated series of lectures showcasing the research of selected Leicester chemistry academics.
Research- based Framed enquiry for exploring existing knowledge.	Research based – Students engage in a variety of authentic assessments, working both individually and as a team to solve real-world problems and develop the necessary skills for both research and employment suitable for STEM graduates. This will include how to apply theory concepts to unseen problems; practical techniques, programming, data processing, data analysis; and how to effectively communicate science.

Research- oriented Students critique published research content and process.	Research oriented – Students will develop the ability to critically appraise their own experimental technique/processes, analyses, and conclusions through lectures, problem classes, laboratory work, computer classes, and authentic assessments. Students receive guidance on evaluating published research and engaging critically with literature through lectures and seminars. Students will also learn to write in the style of scientific research papers, formal reports and populate science articles, enhancing their ability to communicate complex ideas effectively.
Research- apprenticed Experiencing the research process and methods; building new knowledge.	Research apprenticed – Our programme provides the training to ensure the students become junior researchers by the end of their degrees. Across the programme students develop crucial transferable skills for both research and future employment, including report writing, group work, presentation skills, reading research papers, and data searching skills. In the final year of the programme students will be able to undertake small research project(s) to practice the transferable skills developed throughout the course and to solve their own research question.

As part of studying at a research-intensive university, students on this programme have the following extra or co-curricular opportunities available to them to gain exposure to research culture:

In addition to the research-oriented content embedded in the programme's modules, students have several extra-curricular routes to increase their exposure to a global research culture. Flying faculty that visit the DLI campus give lectures on their research in addition to their core teaching. Students on the pathways that visit Leicester have the opportunity to attend the regular academic research lectures that take place and to take advantage of the networking opportunities afforded.

Teaching on this programme will be research-informed (it draws consciously on systematic inquiry into the teaching and learning process itself) in the following way:

The teaching in our School is underpinned by the *Research in Chemical Education (RICE*) group, whose reading and contribution to global pedagogic literature promotes the high quality and highly innovative delivery of our programmes. To this end the School has designed an advanced curriculum that promotes excellence, equal opportunity and high performance from its students through innovative practices such as active learning and authentic assessment strategies. These techniques are embedded across all modules in the programme, with all colleagues being regularly briefed and trained to deliver a consistently excellence student experience. The School supports all staff involved in teaching to gain an accredited Higher Education teaching qualification, in which they demonstrate their use of teaching theory to support their own practice and reflect on their current teaching and continuing professional development.

13. Indications of programme quality

All current BSc degrees at Leicester were accredited by the Royal Society of Chemistry (RSC) in Jan 2016 and reaccredited in January 2022. Whilst the Dalian degree is not itself accredited, it remains constituted primarily of modules from the accredited Leicester programme, and remains informed by current developments in-line with accreditation benchmarking criteria.

14. External Examiner(s) reports

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found at <u>exampapers@Leicester</u> [log-in required]

Programme Specification (Undergraduate) FOR ENTRY YEAR: 2025/26

Date created: Click or tap here to enter text.Last amended: 23/04/2024Version no. 1

Appendix 1: Programme structure (programme regulations)

The University regularly reviews its programmes and modules to ensure that they reflect the current status of the discipline and offer the best learning experience to students. On occasion, it may be necessary to alter particular aspects of a course or module.

Updates to the programme

Academic year affected	Module	Change
2025/26	CH0061 Introduction to Chemistry	30 credit module replaced by two 15 credit modules, CH0065 Introduction to Chemistry 1 and CH0066 Introduction to Chemistry 2
202526	EL0004 University English 3	Moved to Semester 2
2028/29 (for students on the 2+2 and 3+1 programmes)	CH3260 Research Skills, Employability & General Paper	Previously BSc General Paper and Key Skills
2028/29 (for students on the 2+2 and 3+1 programmes)	CH3263 Chemistry BSc Projects Part 1	Replaces CH3261 BSc Project Practical
2028/29 (for students on the 2+2 and 3+1 programmes)	CH3264 Chemistry BSc Projects Part 2	Replaces CH3262 BSc Project Report

BSc Chemistry (4+0)

Level 3/Year 0 2025/26 (Students are at Panjin Campus)

Credit breakdown

Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	EL0002	University English 1: Speaking and Listening	15 credits
Sem 1	EL0003	University English 2: Reading and Writing	15 credits
Sem 1	CH0065	Introduction to Chemistry 1	15 credits
Sem 1	CH0280	Advanced Mathematics I	15 credits
Sem 1		Military Theory and Training	n/a
Sem 1		Moral Cultivation and Basic Law	n/a
Sem 1		Physical Education I	n/a
Sem 2	EL0004	University English 3: Project	15 credits
Sem 2	EL0005	English for Specific Academic Purposes	15 credits
Sem 2	CH0066	Introduction to Chemistry 2	15 credits
Sem 2	CH0281	Advanced Mathematics II	15 credits
Sem 2		Chinese Modern Contemporary History and Situation Policy	n/a
Sem 2		Physical Education II	n/a

Delivery period	Code	Title	Credits
Sem 3		College Student Mental Health and Health Education	n/a

Level 4/Year 1 2026/27 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH1200	General Chemistry	15 credits
Sem 1	CH1202	Introductory Inorganic Chemistry	15 credits
Sem 1	CH1282	Advanced Mathematics III	15 credits
Sem 1	CH1283	College Physics and Practical A	15 credits
Sem 1		College Computing	n/a
Sem 1		Principle of Marxism and Theory of Socialism	n/a
Sem 2	CH1201	Introductory Organic Chemistry	15 credits
Sem 2	CH1203	Introductory Physical Chemistry	15 credits
Sem 2	CH1284	College Physics and Practical B	15 credits
Sem 2		Introduction to Maoism and Theory of Socialism	n/a
Sem 2		General Optional Course 1	n/a

Delivery period	Code	Title	Credits
Sem 3		Cognition Practical	n/a
Sem 2	CH1205	Introductory Practical Chemistry	15 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 5/Year 2 2027/28 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a
		•	120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH2200	Spectroscopy Theory and Practice	15 credits
Sem 1	CH2201	Organic Chemistry	15 credits
Sem 1	CH2280	Principles of Chemical Engineering and Practical I	15 credits
Sem 1	CH2284	Practical Chemistry and Key Skills – Part A	15 credits
Sem 1		Biochemistry	n/a
Sem 1		Biochemistry Practical	n/a
Sem 2	CH2202	Inorganic Chemistry	15 credits
Sem 2	CH2203	Physical Chemistry	15 credits
Sem 2	CH2281	Principles of Chemical Engineering and Practical II	15 credits

Delivery period	Code	Title	Credits
Sem 2	CH2285	Practical Chemistry and Key Skills – Part B	15 credits
Sem 2		General Optional Course 2	n/a
Sem 3		Production Practical	n/a

Level 6/Year 3 2028/29 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	CH3201	Advanced Organic Chemistry	15 credits
Sem 1	CH3202	Advanced Inorganic Chemistry	15 credits
Sem 1	CH3203	Advanced Physical Chemistry	15 credits
Sem 1		General Optional Course 3	n/a
Sem 2	CH3851	Chemistry Research Project Part 1	15 credits
Sem 2	CH3852	Chemistry Research Project Part 2	30 credits

Notes

Delivery of Year Long modules is weighted to ensure approximate equal student workload between semesters.

Option modules

Delivery period	Code	Title	Credits
Sem 1	CH3206	Advanced Analytical Chemistry	15 credits
Sem 1	CH3280	Polymer Chemistry and Physics	15 credits
Sem 2	CH3205	Metals in Synthesis	15 credits
Sem 2	CH3209	Computational Chemistry	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc Chemistry (2+2)

Level 3/Year 0 2025/26 (Students are at Panjin C	Campus)
--	---------

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	EL0002	University English 1: Speaking and Listening	15 credits
Sem 1	EL0003	University English 2: Reading and Writing	15 credits
Sem 1	CH0065	Introduction to Chemistry 1	15 credits

Delivery period	Code	Title	Credits
Sem 1	CH0280	Advanced Mathematics I	15 credits
Sem 1		Military Theory and Training	n/a
Sem 1		Moral Cultivation and Basic Law	n/a
Sem 1		Physical Education I	n/a
Sem 2	EL0004	University English 3: Project	15 credits
Sem 2	EL0005	English for Specific Academic Purposes	15 credits
Sem 2	CH0066	Introduction to Chemistry 2	15 credits
Sem 2	CH0281	Advanced Mathematics II	15 credits
Sem 2		Chinese Modern Contemporary History and Situation Policy	n/a
Sem 2		Physical Education II	n/a
Sem 3		College Student Mental Health and Health Education	n/a

Level 4/Year 1 2026/27 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH1200	General Chemistry	15 credits

Delivery period	Code	Title	Credits
Sem 1	CH1202	Introductory Inorganic Chemistry	15 credits
Sem 1	CH1282	Advanced Mathematics III	15 credits
Sem 1	CH1283	College Physics and Practical A	15 credits
Sem 1		College Computing	n/a
Sem 1		Principle of Marxism and Theory of Socialism	n/a
Sem 2	CH1201	Introductory Organic Chemistry	15 credits
Sem 2	CH1203	Introductory Physical Chemistry	15 credits
Sem 2	CH1284	College Physics and Practical B	15 credits
Sem 2		Introduction to Maoism and Theory of Socialism	n/a
Sem 2		General Optional Course 1	n/a
Sem 3		Cognition Practical	n/a
Sem 2	CH1205	Introductory Practical Chemistry	15 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 5/Year 2 2027/28 (Students are at Leicester)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	75 credits	30 credits	15 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	CH2200	Spectroscopy Theory and Practice	15 credits
Sem 1	CH2207	Polymer and Materials Chemistry	15 credits
Sem 2	CH2206	Analytical Chemistry in Practice	15 credits
Year long	CH2201	Organic Chemistry	15 credits
Year long	CH2202	Inorganic Chemistry	15 credits
Year long	CH2203	Physical Chemistry	15 credits
Year long	CH2204	Practical Chemistry and Key Skills	30 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 6/Year 3 2028/29 (Students are at Leicester)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	15 credits	45 credits	45 credits
Optional	n/a	n/a	15 credits
		·	120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH3201	Advanced Organic Chemistry	15 credits
Sem 1	CH3202	Advanced Inorganic Chemistry	15 credits
Sem 1	CH3263	Chemistry BSc Projects Part 1	15 credits

Delivery period	Code	Title	Credits
Sem 2	CH3203	Advanced Physical Chemistry	15 credits
Sem 2	CH3205	Metals in Synthesis	15 credits
Sem 2	CH3264	Chemistry BSc Projects Part 2	15 credits
Year long	CH3260	Research Skills, Employability & General Paper	15 credits

Notes

Delivery of Year Long modules is weighted to ensure approximate equal student workload between semesters.

Option modules

Delivery period	Code	Title	Credits
Sem 2	CH3206	Advanced Analytical Chemistry	15 credits
Sem 2	CH3208	Advanced Materials Chemistry	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc Chemistry (2+1+1)

Level 3/Year 0 2025/26 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	EL0002	University English 1: Speaking and Listening	15 credits
Sem 1	EL0003	University English 2: Reading and Writing	15 credits
Sem 1	CH0065	Introduction to Chemistry 1	15 credits
Sem 1	CH0280	Advanced Mathematics I	15 credits
Sem 1		Military Theory and Training	n/a
Sem 1		Moral Cultivation and Basic Law	n/a
Sem 1		Physical Education I	n/a
Sem 2	EL0004	University English 3: Project	15 credits
Sem 2	EL0005	English for Specific Academic Purposes	15 credits
Sem 2	CH0066	Introduction to Chemistry 2	15 credits
Sem 2	CH0281	Advanced Mathematics II	15 credits
Sem 2		Chinese Modern Contemporary History and Situation Policy	n/a
Sem 2		Physical Education II	n/a
Sem 3		College Student Mental Health and Health Education	n/a

Level 4/Year 1 2026/27 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	CH1200	General Chemistry	15 credits
Sem 1	CH1202	Introductory Inorganic Chemistry	15 credits
Sem 1	CH1282	Advanced Mathematics III	15 credits
Sem 1	CH1283	College Physics and Practical A	15 credits
Sem 1		College Computing	n/a
Sem 1		Principle of Marxism and Theory of Socialism	n/a
Sem 2	CH1201	Introductory Organic Chemistry	15 credits
Sem 2	CH1203	Introductory Physical Chemistry	15 credits
Sem 2	CH1284	College Physics and Practical B	15 credits
Sem 2		Introduction to Maoism and Theory of Socialism	n/a
Sem 2		General Optional Course 1	n/a
Sem 3		Cognition Practical	n/a
Sem 2	CH1205	Introductory Practical Chemistry	15 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 5/Year 2 2027/28 (Students are at Leicester)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	75 credits	30 credits	15 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	CH2200	Spectroscopy Theory and Practice	15 credits
Sem 1	CH2207	Polymer and Materials Chemistry	15 credits
Sem 2	CH2206	Analytical Chemistry in Practice	15 credits
Year long	CH2201	Organic Chemistry	15 credits
Year long	CH2202	Inorganic Chemistry	15 credits
Year long	CH2203	Physical Chemistry	15 credits
Year long	CH2204	Practical Chemistry and Key Skills	30 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 6/Year 3 2028/29 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH3201	Advanced Organic Chemistry	15 credits
Sem 1	CH3202	Advanced Inorganic Chemistry	15 credits

Delivery period	Code	Title	Credits
Sem 1	CH3203	Advanced Physical Chemistry	15 credits
Sem 1		General Optional Course 3	n/a
Sem 2	CH3851	Chemistry Research Project Part 1	15 credits
Sem 2	CH3852	Chemistry Research Project Part 2	30 credits

Notes

Delivery of Year Long modules is weighted to ensure approximate equal student workload between semesters.

Option modules

Delivery period	Code	Title	Credits
Sem 1	CH3206	Advanced Analytical Chemistry	15 credits
Sem 1	CH3280	Polymer Chemistry and Physics	15 credits
Sem 2	CH3205	Metals in Synthesis	15 credits
Sem 2	CH3209	Computational Chemistry	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc Chemistry (3+1)

Level 3/Year 0 2025/26 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits

Status	Year long	Semester 1	Semester 2
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	EL0002	University English 1: Speaking and Listening	15 credits
Sem 1	EL0003	University English 2: Reading and Writing	15 credits
Sem 1	CH0065	Introduction to Chemistry 1	15 credits
Sem 1	CH0280	Advanced Mathematics I	15 credits
Sem 1		Military Theory and Training	n/a
Sem 1		Moral Cultivation and Basic Law	n/a
Sem 1		Physical Education I	n/a
Sem 2	EL0004	University English 3: Project	15 credits
Sem 2	EL0005	English for Specific Academic Purposes	15 credits
Sem 2	CH0066	Introduction to Chemistry 2	15 credits
Sem 2	CH0281	Advanced Mathematics II	15 credits
Sem 2		Chinese Modern Contemporary History and Situation Policy	n/a
Sem 2		Physical Education II	n/a
Sem 3		College Student Mental Health and Health Education	n/a

Level 4/Year 12026/27(Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH1200	General Chemistry	15 credits
Sem 1	CH1202	Introductory Inorganic Chemistry	15 credits
Sem 1	CH1282	Advanced Mathematics III	15 credits
Sem 1	CH1283	College Physics and Practical A	15 credits
Sem 1		College Computing	n/a
Sem 1		Principle of Marxism and Theory of Socialism	n/a
Sem 2	CH1201	Introductory Organic Chemistry	15 credits
Sem 2	CH1203	Introductory Physical Chemistry	15 credits
Sem 2	CH1284	College Physics and Practical B	15 credits
Sem 2		Introduction to Maoism and Theory of Socialism	n/a
Sem 2		General Optional Course 1	n/a
Sem 3		Cognition Practical	n/a
Sem 2	CH1205	Introductory Practical Chemistry	15 credits

Notes

Delivery of Year Long modules is weighted towards Semester 2 to ensure approximate equal student workload between semesters.

Level 5/Year 2 2027/28 (Students are at Panjin Campus)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	60 credits	60 credits
Optional	n/a	n/a	n/a

120 credits in total

Delivery period	Code	Title	Credits
Sem 1	CH2200	Spectroscopy Theory and Practice	15 credits
Sem 1	CH2201	Organic Chemistry	15 credits
Sem 1	CH2280	Principles of Chemical Engineering and Practical I	15 credits
Sem 1	CH2284	Practical Chemistry and Key Skills – Part A	15 credits
Sem 1		Biochemistry	n/a
Sem 1		Biochemistry Practical	n/a
Sem 2	CH2202	Inorganic Chemistry	15 credits
Sem 2	CH2203	Physical Chemistry	15 credits
Sem 2	CH2281	Principles of Chemical Engineering and Practical II	15 credits
Sem 2	CH2285	Practical Chemistry and Key Skills – Part B	15 credits
Sem 2		General Optional Course 2	n/a
Sem 3		Production Practical	n/a

Level 6/Year 3 2028/29 (Students are at Leicester)

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	15 credits	45 credits	45 credits
Optional	n/a	n/a	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	CH3201	Advanced Organic Chemistry	15 credits
Sem 1	CH3202	Advanced Inorganic Chemistry	15 credits
Sem 1	CH3263	Chemistry BSc Projects Part 1	15 credits
Sem 2	CH3203	Advanced Physical Chemistry	15 credits
Sem 2	CH3205	Metals in Synthesis	15 credits
Sem 2	CH3264	Chemistry BSc Projects Part 2	15 credits
Year long	CH3260	Research Skills, Employability & General Paper	15 credits

Notes

Delivery of Year Long modules is weighted to ensure approximate equal student workload between semesters.

Option modules

Delivery period	Code	Title	Credits
Sem 2	CH3206	Advanced Analytical Chemistry	15 credits
Sem 2	CH3208	Advanced Materials Chemistry	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

Appendix 2: Module specifications

See undergraduate <u>module specification database</u> [log in required] (Note - modules are organized by year of delivery).