

# Programme Specification (Undergraduate) For students entering in 2019/20 Date amended: 26 Jun 2019

# 1. Programme Title(s) and UCAS code(s):

BSc Computer Science (G400)

BSc Computer Science with a Year Abroad (G401)

BSc Computer Science with a Year in Industry (G402)

### 2. Awarding body or institution:

University of Leicester

### 3. a) Mode of study:

Full-time

b) Type of Study:

Campus-based

### 4. Registration periods:

The normal period of registration is three years (four years for the "Year Abroad" and "Year in Industry" variants).

The maximum period of registration is five years (six years for the "Year Abroad" and "Year in Industry" variants).

#### For Foundation Year Variant:

The normal period of registration is four years (one year for the Foundation Year, with three years for the BSc). The maximum period of registration is six years (one year for the Foundation Year, and five years for the BSc)

# 5. Typical entry requirements:

A level: ABB or points equivalent from best three A levels. Computer Science or Mathematics preferred but not essential.

BTEC Diploma: D\*D\*D in appropriate subject area, plus a pass in a Departmental UCAS day test.

#### For Foundation Year Variant:

A level: BBB or points equivalent from best three A levels. Typically in subjects outside of the 'usual' A levels expected by the department.

BTEC Diploma: D\*DD in appropriate subject area.

# 6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case basis and subject to the general provisions of the University APL policy.

For Foundation Year Variant:

n/a

# 7. Programme aims:

The programme aims to:

- Provide students with a state-of-the-art education in Computer Science that includes both theory and foundations (pure Computer Science), and practical applications (applied Computer Science).
- Provide opportunities for students to learn a wide range of skills in the analysis, specification, design, implementation, testing, maintenance and documentation of computer software systems.
- Enable students to become proficient in a variety of modern programming languages, and the underlying principles of programming paradigms (concurrent, imperative, functional, logical, mobile, object oriented and so on).
- Enable students to explain core subjects such as advanced algorithms, computer architecture, operating systems and networks, foundations of computation, databases, web & mobile computing, together with a further range of advanced subjects such as data analytics, big data, and machine learning that reflect the research expertise of the Department.
- Enable students to develop skills such as Communication, Teamwork<sup>^</sup>, Leadership & Supervision, Researching & Analyzing<sup>^</sup>, Problem Solving & Decision Making<sup>^</sup>, Planning & Organization<sup>^</sup>; Learning, Improving & Achieving; Resilience, Adaptability & Drive; and Digital Skills<sup>^</sup>. Skills labelled <sup>^</sup> are taught to a high level of insight and complexity.
- Provide students with experience of both team-based and individual project work.
- To develop an appreciation for computational, mathematical and scientific thinking, along with an appreciation of the necessity for rigorous subject foundations, and the need for mathematical and logical arguments, which will provide a lifelong support for careers.
- Ensure students will have expertise and understanding at a level where they can embark upon a high quality taught Masters programme in Computer Science.

# In addition to these aims, G401 BSc Computer Science with a Year Abroad aims to:

- Enable students to experience modern Computer Science from an international perspective.
- Develop students' working knowledge of a language other than English.
- Provide students with an environment that will encourage a thoughtful and mature approach to all aspects of study and life, creating graduates with broad experiences and horizons.

# In addition to these aims, G402 BSc Computer Science with a Year in Industry aims to:

• Enable students to take up industrial placements where they can gain first-hand experience of the requirements, challenges and opportunities of the computing industry in the UK.

• Enable students to use and further develop the knowledge and skills gained during the first two years of the degree programme.

For Foundation Year variant, see Foundation Year Programme Specification

### 8. Reference points used to inform the programme specification:

- QAA Benchmarking Statement for Computing 2016.
- University of Leicester Learning Strategy 2016-2020.
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual).
- PDR report.

# 9. Programme Outcomes:

| Intended Learning Outcomes                                        | Teaching and Learning                                           | How                                                     |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--|
| Intended Learning Outcomes                                        | Methods                                                         | Demonstrated?                                           |  |
|                                                                   | memous                                                          | Benionstrateur                                          |  |
| (a) Discipli                                                      | ne specific knowledge and compe                                 | tencies                                                 |  |
| (i) Mastery of an appropriate body of knowledge                   |                                                                 |                                                         |  |
|                                                                   |                                                                 |                                                         |  |
| 1. Explain and discuss both                                       | Lectures, tutorials, computer<br>laboratories, audios & videos, | Written examinations, summative and formative           |  |
| foundations and applications of<br>Computer Science together with | group discussions, project work,                                | coursework, group and                                   |  |
| concomitant scientific knowledge                                  | guided independent study. Also                                  | individual project                                      |  |
| and concepts from logic and                                       | background reading and research.                                | presentations, individual                               |  |
| mathematics.                                                      |                                                                 | project oral examinations and<br>project dissertations. |  |
| 2. Explain, discuss and apply                                     |                                                                 |                                                         |  |
| engineering principles scientific                                 | As above.                                                       | A                                                       |  |
| principles and mathematical and                                   |                                                                 | As above.                                               |  |
| logical theories in computing.                                    |                                                                 |                                                         |  |
| 3. Demonstrate mastery of the core                                |                                                                 |                                                         |  |
| of an appropriate foreign language                                |                                                                 |                                                         |  |
| (G401)                                                            | Lectures, language laboratories                                 |                                                         |  |
| 4. Demonstrate understanding of                                   | and learning abroad.                                            | Assessment at host                                      |  |
| the core elements of industrial                                   |                                                                 | institution.                                            |  |
| practice and organisation (G402).                                 |                                                                 |                                                         |  |
|                                                                   | Work placement.                                                 | Discoment Departs                                       |  |
|                                                                   |                                                                 | Placement Report;<br>presentation.                      |  |
| Intended Learning Outcomes                                        | Teaching and Learning                                           | How                                                     |  |
|                                                                   | Methods                                                         | Demonstrated?                                           |  |
| (ii) Understandin                                                 | g and application of key concepts an                            | d techniques                                            |  |
| Apply knowledge of Mathematics,                                   | Lectures, tutorials, computer                                   | Written examinations,                                   |  |
| Logic and Computer Science to                                     | laboratories, audios & videos,                                  | summative and formative                                 |  |
| solve individual problems, both seen                              | group discussions, project work,                                | coursework, group and                                   |  |
| and unseen.                                                       | guided independent study. Also background reading and research. | individual project<br>presentations, individual         |  |
|                                                                   |                                                                 | project oral examinations and                           |  |
|                                                                   |                                                                 | project dissertations.                                  |  |
| Apply the concepts and techniques                                 | As above.                                                       |                                                         |  |
| of abstraction, reification, logical                              |                                                                 |                                                         |  |
| structure and modelling, that pervade Computer Science and        |                                                                 | As above.                                               |  |
| Software Engineering to specify,                                  |                                                                 |                                                         |  |
| design, implement and test small to                               |                                                                 |                                                         |  |
| medium size computer systems.                                     |                                                                 |                                                         |  |
| Explain and apply the theoretical                                 | As above, with emphasis on all                                  |                                                         |  |
| principles, and practical tools of                                | forms of project work.                                          |                                                         |  |
| Mathematics, Logic, Computer                                      |                                                                 |                                                         |  |

| Science, and Software Engineering,<br>together with suitable processes<br>and methodologies, to determine<br>strategies for innovative solutions<br>of large scale problems. not Logic.]<br>Demonstrate ability to<br>communicate some aspects of<br>Computer Science in a foreign<br>language. (G401)<br>Work as a computer scientist and<br>computing engineer in an industrial<br>or commercial setting. (G402)                                                                                                                                                                                                             | Lectures and language<br>instruction.                                                                                                                                                  | As above, with emphasis on<br>project assessments.<br>As above                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Intended Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Teaching and Learning                                                                                                                                                                  | University report.<br>How Demonstrated?                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methods                                                                                                                                                                                |                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (iii) Critical analysis of key issues                                                                                                                                                  | -                                                                                                                                                                                                    |  |
| <ol> <li>Analyse client/customer<br/>problems, requirements and<br/>criteria, and hence plan an<br/>appropriate yet innovative solution<br/>strategy.</li> <li>Explain and analyse the<br/>constraints of budgets, data, time,<br/>staffing and resources in the<br/>practical computing domain,<br/>undertaking suitable research.<br/>Ensure software solutions are fit-<br/>for-purpose. Manage the complete<br/>engineering process and evaluate<br/>the end product, and to work with<br/>associated uncertainties.</li> <li>Be able to recognise risks in the<br/>deployment and use of software<br/>systems.</li> </ol> | Lectures, tutorials, computer<br>laboratories, audios & videos,<br>group discussions, project work,<br>guided independent study. Also<br>background reading and research.<br>As above. | Written examinations,<br>summative and formative<br>coursework, group and<br>individual project<br>presentations, individual<br>project oral examinations and<br>project dissertations.<br>As above. |  |
| (iv) Clear and concise presentation of material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                      |  |
| Present information in a variety of<br>forms, chosen to maximise<br>reader/audience impact and<br>understanding, such as reports,<br>dissertations, seminars, posters,<br>blogs, podcasts, videos and other<br>current media technologies.                                                                                                                                                                                                                                                                                                                                                                                     | Lectures, tutorials, computer<br>laboratories, audios & videos,<br>group discussions, project work,<br>guided independent study. Also<br>background reading and research.              | Written examinations,<br>summative and formative<br>coursework, group and<br>individual project<br>presentations, individual<br>project oral examinations and<br>project dissertations.              |  |

| (v) Critical a                                                                                                                                                                                                                                                                                                                                                                                                                                                             | opraisal of evidence with appropriate                                                                                                                                     | e insight                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Evaluate and appraise software<br/>systems, in terms of attributes and<br/>tradeoffs. Identify risks and safety<br/>concerns.</li> <li>Perform software testing, and<br/>critically evaluate and analyse test<br/>results. Evaluate whether a system<br/>meets requirements, for future and<br/>for current use.</li> <li>Use relevant knowledge to<br/>appraise the commercial use and<br/>economic and long- term viability<br/>of computer systems.</li> </ol> | Lectures, tutorials, computer<br>laboratories, audios & videos,<br>group discussions, project work,<br>guided independent study. Also<br>background reading and research. | Written examinations,<br>summative and formative<br>coursework, group and<br>individual project<br>presentations, individual<br>project oral examinations and<br>project dissertations. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )<br>hther discipline specific competencies                                                                                                                               | s                                                                                                                                                                                       |
| <ul> <li>1. Explain and discuss social, legal<br/>and ethical issues as required by<br/>computing professionals. Adopt<br/>and implement suitable<br/>professional and legal practice.</li> <li>2. Explain and react to the rapidity<br/>of change in Computer Science.<br/>Formulate innovative and creative<br/>ideas for future advances.</li> <li>3. Collect, work with and analyze<br/>all forms of data.</li> </ul>                                                  | Lectures, tutorials, computer<br>laboratories, audios & videos,<br>group discussions, project work,<br>guided independent study. Also<br>background reading and research. | Written examinations,<br>summative and formative<br>coursework, group and<br>individual project<br>presentations, individual<br>project oral examinations and<br>project dissertations. |

| (b) Transferable skills                                                                                                                                                                                   |                                                                                                                                                 |                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                           | (i) Oral communication                                                                                                                          |                                                                                               |  |
| 1. Respond to technical questions with accurate and concise answers.                                                                                                                                      | Lectures and tutorials. Project supervisions.                                                                                                   | Group and individual project presentations, individual project oral examinations.             |  |
| 2. Demonstrate fluent and sustained scientific, technical and business communication.                                                                                                                     | As above.                                                                                                                                       | As above.                                                                                     |  |
| 3. Demonstrate core oral communication skills in a foreign language (G401).                                                                                                                               | Language tuition.                                                                                                                               | Host University assessment.                                                                   |  |
|                                                                                                                                                                                                           | (ii) Written communication                                                                                                                      |                                                                                               |  |
| 1. Write concise and accurate<br>summaries of computing and<br>scientific knowledge, and solutions<br>to problems, in a variety of<br>different formats.                                                  | Lectures, tutorials, computer<br>laboratories, project work.                                                                                    | Written examinations, assessed coursework.                                                    |  |
| <ol> <li>Produce properly structured,<br/>clear, advanced technical reports or<br/>dissertations.</li> <li>Demonstrate core written<br/>communication skills in a foreign<br/>language (G401).</li> </ol> | Lectures and tutorials. Discussed<br>in both group and individual<br>project supervisions.<br>Lectures, tutorials, language<br>laboratory work. | Group project assessed<br>coursework and individual<br>project reports.<br>University report. |  |
|                                                                                                                                                                                                           | (iii) Information technology                                                                                                                    |                                                                                               |  |
| 1. Use a very broad range of<br>software and IT tools, and to<br>choose these appropriately for uses<br>throughout Computer Science.                                                                      | Lectures, tutorials and laboratories.                                                                                                           | Assessed (laboratory)<br>coursework.                                                          |  |
| 2. Adapt to future programming<br>languages and paradigms, and all<br>varieties of software tools and<br>technology.                                                                                      | As above.                                                                                                                                       | As above.                                                                                     |  |
|                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                               |  |

| Intended Learning Outcomes                                                                                                                                                                         | Teaching and Learning<br>Methods                              | How<br>Demonstrated?                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                                                                                    | (iv) Numeracy                                                 |                                                                                    |
| 1. Demonstrate understanding of<br>the concept of number. Solve<br>numerical problems.                                                                                                             | Lectures, tutorials, computer<br>laboratories.                | Written examinations, assessed coursework.                                         |
| 2. Use analytical, quantitative, and graphical methods, and deploy elementary statistics.                                                                                                          | As above, together with project work.                         | As above, along with group<br>and individual project<br>presentations and reports. |
|                                                                                                                                                                                                    | (v) Team working                                              |                                                                                    |
|                                                                                                                                                                                                    | (v) Team working                                              |                                                                                    |
| 1. Work effectively as part of a team, organise roles and manage time, undertake assigned tasks, and ensure final completion of a team project. Identify strengths and weaknesses of team members. | Lectures, tutorials and project supervision.                  | Group project assessed<br>coursework and<br>presentations. Mini projects.          |
|                                                                                                                                                                                                    | (vi) Problem solving                                          |                                                                                    |
| 1. Solve a variety of short problems<br>through the integration of<br>knowledge of mathematics, logic,<br>and Computer Science.                                                                    | Lectures and tutorials. Also covered in project supervisions. | Written examinations,<br>assessed coursework, and<br>project reports.              |
| 2. Use systematic analysis and design methods, and appropriate algorithms, to solve medium scale problems.                                                                                         | As above.                                                     | As above.                                                                          |
| 3. Analyze large-scale problems to<br>produce suitable solutions with<br>sensible economic and commercial<br>compromises. Apply management<br>techniques to allocate resources to<br>projects.     | As above.                                                     | Group and individual project presentations and reports.                            |
|                                                                                                                                                                                                    |                                                               |                                                                                    |

| (vii) Information handling                                                                                                                                    |                                                                               |                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1. Conduct significant background research and literature surveys, and summarise content from information sources.                                            | Taught in lectures. Also covered in project supervisions.                     | Individual project reports.                                           |
| 2. Demonstrate a broad<br>understanding of problems and<br>issues that arise in the location,<br>organization, processing and<br>evaluation of data.          | As above.                                                                     | Written examinations,<br>assessed coursework, and<br>project reports. |
| 3. Recognize the need for<br>information, and work with fuzzy,<br>limited and possibly contradictory<br>information.                                          | As above.                                                                     | As above.                                                             |
|                                                                                                                                                               | (viii) Skills for lifelong learning                                           |                                                                       |
| 1. Demonstrate knowledge and<br>understanding of professional and<br>ethical issues, and aspects of the<br>law, in the context of Computing<br>Professionals. | Lectures and tutorials. Also covered in project supervisions.                 | Written examinations,<br>assessed coursework, and<br>project reports. |
| <ol> <li>Demonstrate independence and time management skills.</li> </ol>                                                                                      | Project supervisions and research project work. Meeting coursework deadlines. | Project reports.                                                      |
| 3. Design a personal work plan and<br>be able to improve performance<br>with a clear view of long-term<br>professional development.                           | Project supervisions and research project work.                               | As above.                                                             |
|                                                                                                                                                               |                                                                               |                                                                       |

### **10.** Progression points:

This programme follows the standard scheme of award and classification set out in Senate Regulation 5 modified as follows:

Regulation 5.10 applies absolutely to CO2201 Software Engineering Project and CO2103 Software Architecture and System Design.

### For Foundation Year Variant:

Progression from Foundation Year to year 1: In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course.

Students will be required to pass Foundation Year in order to progress to Year 1 with an average module mark of at least 60%. Students are required to have a mark of at least 60% in FS0031 and FS0032 to progress onto the BSc Computer Science.

For the with industry variant:

- Students should normally pass the first year at the first attempt; and
- should normally pass the second year at first sitting in January/June, otherwise they will be transferred to the equivalent three year degree.

In year 1 and year 2, students normally need to achieve a CWA of 55%. Exceptional cases may be approved by the appropriate assessment boards.

British Computer Society Accreditation requires that individual projects be passed at the first attempt.

### **11. Scheme of Assessment**

This programme follows the standard Scheme of award and classification set out in <u>Senate Regulation 5.</u>

If regulation 5.14(c) applies in relation to any of the modules CO1102, CO1105, CO1107 then failed marks must be no lower than 35% (rather than the normal 30%) in order for students to proceed and re-sit.

#### 12. Special features:

Emphasis on blending long-term foundational knowledge with state-of-the-art technologies and current programming languages; a structured approach to teaching a wide range of programming paradigms; Software Engineering Projects involving an external client wherever possible; Individual Projects with a number of structured milestones.

#### **13.** Indications of programme quality

British Computer Society Accreditation will be sought, and requires that individual projects be passed at the first attempt.

#### 14. External Examiner

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports can be found <u>here.</u>

# Appendix 1: Programme structure (programme regulations) overleaf

# Appendix 2: Module specifications

See module specification database <a href="http://www.le.ac.uk/sas/courses/documentation">http://www.le.ac.uk/sas/courses/documentation</a>

Appendix 3: Skills matrix See skills matrix

Appendix 4: Foundation Year Programme Specification

| BSc COMPUTER SCIENC | CE;                                                                                          |                  |          |
|---------------------|----------------------------------------------------------------------------------------------|------------------|----------|
| FIRST YEAR MODULES  | SEMESTER 1                                                                                   |                  |          |
| Core Modules        |                                                                                              |                  | Credit   |
| CO1103              | MATHEMATICS FUNDAMENTALS                                                                     |                  | 15       |
| CO1102              | PROGRAMMING FUNDAMENTALS                                                                     |                  | 15       |
| CO1101              | COMPUTING FUNDAMENTALS                                                                       |                  | 15       |
| CO1104              | COMPUTER ARCHITECTURE                                                                        |                  | 15       |
|                     |                                                                                              | Semester Total   | 6        |
|                     | SEMESTER 2                                                                                   |                  | <b>.</b> |
| Core Modules        |                                                                                              |                  | Credit   |
| CO1105              | INTRODUCTION TO OBJECT ORIENTED PROGRAMMING                                                  |                  | 15       |
| CO1106              | REQUIREMENTS ENGINEERING AND PROFESSIONAL PRACTICE                                           |                  | 15       |
| CO1107              | ALGORITHMS, DATA STRUCTURES AND ADVANCED PROGRAMMING                                         |                  | 15       |
| CO1108              | FOUNDATIONS OF COMPUTATION                                                                   | Comparison Total | 15       |
| SECOND YEAR MODUL   | ES SEMESTER 1                                                                                | Semester Total   | 6        |
| Core Modules        |                                                                                              |                  | Credit   |
| CO2102              | DATABASES AND WEB INTERFACES                                                                 |                  | 15       |
| CO2201              | SOFTWARE ENGINEERING PROJECT [PART I]                                                        |                  | 15       |
| CO2201              | SOFTWARE ENGINEERING FIGURE (FIGURE)<br>SOFTWARE ARCHITECTURE AND SYSTEM DEVELOPMENT [PARTI] |                  | 15       |
| CO2103              | OPERATING SYSTEMS AND NETWORKS                                                               |                  | 15       |
| 001101              |                                                                                              |                  | 10       |
|                     |                                                                                              | Semester Total   | 60       |
|                     | SEMESTER 2                                                                                   |                  |          |
| Core Modules        |                                                                                              |                  | Credit   |
| CO2201              |                                                                                              |                  | 15       |
| CO2103              | SOFTWARE ARCHITECTURE AND SYSTEM DEVELOPMENT [PART II]                                       |                  | 15       |
| CO2104              | USER INTERFACES AND HCI                                                                      |                  | 15       |
| Optional Modules    |                                                                                              |                  |          |
| 15 credits of       | options selected from:                                                                       |                  |          |
| CO2107              | FUNCTIONAL PROGRAMMING                                                                       |                  | 15       |
| CO2106              | DATA ANALYTICS                                                                               |                  | 15       |
| CO2114 FOU          | NDATIONS OF ARTIFICIAL INTELLIGENCE 15                                                       | Semester Total   | 60       |
|                     |                                                                                              | Jemester rotar   | 0        |
| THIRD YEAR MODULES  | SEMESTER 1                                                                                   |                  |          |
| Core Modules        |                                                                                              |                  | Credit   |
| CO3201              | COMPUTER SCIENCE PROJECT [PART I]                                                            |                  | 15       |
| CO3101              | COMPUTERS, SOCIETY & PROFESSIONALISM                                                         |                  | 15       |
| Optional Modules    |                                                                                              |                  |          |
| 30 credits of       | options selected from:                                                                       |                  |          |
| CO3007              | COMMUNICATION AND CONCURRENCY                                                                |                  | 15       |
| CO3106 ART          | IFICAL INTELLENGENCE FOR CYBER PHYSICAL SYSTEMS 15                                           |                  |          |
| CO3219 INTE         | RNET AND CLOUD COMPUTING 15                                                                  |                  |          |
| 602405              |                                                                                              |                  | 4 -      |

CO3105C++ PROGRAMMINGCO3095SOFTWARE MEASUREMENT AND QUALITY ASSURANCE

| CO31          | 102      | MOBILE AND WEB APPLICATIONS                         |                | 15     |
|---------------|----------|-----------------------------------------------------|----------------|--------|
| 031           | 102      | NOBILL AND WEB AFFLICATIONS                         |                | 15     |
| CO30          | 091      | COMPUTATIONAL INTELLIGENCE AND SOFTWARE ENGINEERING |                | 15     |
|               |          |                                                     |                |        |
|               |          |                                                     | Semester Total | 60     |
|               |          | SEMESTER 2                                          |                |        |
| Core Modules  |          |                                                     | C              | redits |
| CO32          | 201      | COMPUTER SCIENCE PROJECT [PART II]                  |                | 30     |
| Optional Modu | ıles     |                                                     |                |        |
| 30 cr         | edits of | options selected from:                              |                |        |
| CO30          | 002      | ANALYSIS AND DESIGN OF ALGORITHMS                   |                | 15     |
| CO32          | 207 GEN  | IERATIVE DEVELOPMENT 15                             |                |        |
| CO30          | 090      | DISTRIBUTED SYSTEMS AND APPLICATIONS                |                | 15     |
| CO30          | 096      | COMPRESSIONS METHODS FOR MULTIMEDIA                 |                | 15     |
| CO30          | 099      | FOUNDATIONS OF CYBER SECURITY                       |                | 15     |
| CO30          | 093      | BIG DATA AND PREDICTIVE ANALYTICS                   |                | 15     |
|               |          |                                                     | Semester Total | 60     |

#### BSc COMPUTER SCIENCE WITH A YEAR ABROAD

#### **First and Second Year Modules**

As for the first- and second-year of the BSc degree in Computer Science.

#### **Third Year Modules**

The third year will be spent abroad taking approved courses either in an institution associated with the Computer Science Department via an ERASMUS bilateral agreement or in a university that has a Study Abroad exchange partnership agreement with the University of Leicester. Students will normally be required to complete the year and to reach a pass level of attainment in 60 credits of Computer Science modules Failure to do so will result in the student reverting to the three year BSc Computer Science degree. The marks awarded during the year abroad do not contribute to the final degree classification.

Note: Transfer will be confirmed only after successful completion of the first year.

#### **Fourth Year Modules**

As for the third-year of the BSc degree in Computer Science.

#### **BSc COMPUTER SCIENCE WITH A YEAR IN INDUSTRY**

#### **First and Second Year Modules**

As for the first- and second-year of the BSc degree in Computer Science.

#### **Third Year Modules**

- 1. Students will work within a sponsoring company for one year between 1 July of the second year of the course and the start of the following year.
- 2. During their one-year placement students will undertake a programme of training and work experience which will be agreed by the sponsoring company and the University.
- 3. Students will be expected to keep a logbook recording their training and experience that is to be presented for approval to the sponsoring company and the University.
- 4. Students will be issued with a *Certificate of Industrial Studies* indicating successful completion of their placement. Students who do not satisfactorily complete their industrial placement will be transferred to the B.Sc. Computer Science degree.

The Year in Industry does not contribute to the final degree classification.

#### Fourth Year Modules

As for the third-year of the BSc degree in Computer Science.