

Programme specification For students entering in 2018/19 Date amended: 12/07/18

1. Programme title(s) and UCAS code(s):

Chemistry Foundation Year

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus-based

4. Registration periods:

The normal period of registration is one year (progressing to a 3 or 4 year UG degree)

The maximum period of registration for the Foundation Year is 2 years.

The Foundation Year is linked to BSc & MChem Chemistry programmes which have their own maximum registration period. The Foundation Year will contribute towards the maximum registration period of these programmes; this is shown in the programme specifications for these degrees.

5. Typical entry requirements:

A level: CCC or points equivalent from best three A levels; must include Chemistry. BTEC Diploma:

DDM in appropriate subject area.

The programme is designed to provide a second chance to applicants who have just missed their Alevel entry grades for standard first year entry.

6. Accreditation of Prior Learning:

NA

7. Programme aims:

The programme aims to:

- Help students to develop mature professional and study skills that will equip them to thrive in a UG degree programme and beyond
- Provide students who lack suitable entry qualifications with training in chemistry, mathematics and study skills that will enable them to progress onto a UG degree programme in Chemistry.

8. Reference points used to inform the programme specification:

- <u>University of Leicester Learning and Teaching Strategy 2011-2016</u>
- Specification documents for various A level mathematics qualifications
- Specification documents for various A level chemistry qualifications

9. Programme Outcomes:

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?				
(a) D	iscipline specific knowledge and com	petencies				
(i) Mastery of an appropriate body of knowledge						
Mastery of mathematics and chemistry equivalent to parts of the content of A level	Course text book and other specially prepared pre-reading. Lectures, problem classes. Group work/peer learning. Regular coursework with timely feedback.	Regular coursework assessments. Group projects. Presentations. Formal laboratory reports. End of semester examinations. Blackboard- based multiple choice exams. Precis of research article				
	anding and application of key concepts					
Application of chemistry and mathematics knowledge to specific scenarios	Regular coursework questions with timely feedback. Group work/peer learning. Workshop/surgery sessions.	Regular coursework assessments. End of semester examinations.				
(iii) Critical analysis of key issues						
Students should be able to explain the process of scientific enquiry, the roles of experiment and theory, the limits of science and the role of experimental error.	Induction programmes, resource based learning, group projects, seminars	Presentations, written reports, literature review,				
(iv) Clear and concise presentation of m	aterial				
Students should be able to communicate scientific ideas through written material and oral presentations.	Lectures, seminars, written guidance (handbook). Formative feedback on presentations and reports.	Presentations, written reports, literature review,				
(v) Crit	tical appraisal of evidence with approp	riate insight				
Distinguish between precision and accuracy and explain the role of experimental error in the scientific process.	Embedded throughout the programme in lectures, seminars workshops, written course material, handbook. Specific instruction through problem solving classes	Written reports, specific coursework assessments.				
	(vi) Other discipline specific competer	ncies				
Use mathematical models to explain various features of physical and chemical phenomena. View mathematics as an integral part of scientific method rather than as a separate, compartmentalised subject.	Embedded throughout the programme by means of examples in lectures, seminars workshops, written course material. Coursework with rapid feedback	Regular coursework assessments. End of semester examinations				
	(b) Transferable skills					
	(i) Oral communication					
Students should be able to communicate scientific ideas through oral presentations.	Lectures, seminars, written guidance (handbook). Formative feedback on presentations.	Individual and group presentations.				

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?			
(ii) Written communication					
Students should be able to communicate scientific ideas through written material. Students should master the art of setting out a mathematical proof in a clear, logical manner	Lectures, seminars, written guidance (handbook). Formative feedback on written coursework assessments, reports, and mathematical submissions	Reports, regular science coursework assignments, regular competency- base mathematical submissions.			
	(iii) Information technology				
 Students should be able to use electronic resources to find information evaluate such information use IT resources to process data use IT to present data 	Seminars, tutorials, inductions sessions, advice in course materials and handbook, formative feedback on presentations	Individual and group presentations.			
	(iv) Numeracy				
Mastery of specific elements of chemistry and mathematics at AS-level standard	Course materials, pre-reading, lectures, problem classes, formative feedback on coursework submissions, competency-based mathematics tuition	Coursework submissions, end of semester examinations.			
	(v) Team working				
Working in groups to solve problems, prepare and deliver reports and presentations.	Feedback in workshops. Formative feedback on presentations and reports.	Presentations and reports. <i>Viva</i> -voce examination (computer program), peer assessment.			
(vi) Problem solving					
To apply scientific, chemical and mathematical knowledge to a wide variety of problems	Lectures, workshops, formative feedback on regular coursework assessments.	regular coursework assessments, examinations			
(vii) Information handling					
Students should be able to correctly process, arrange and present scientific data and draw appropriate conclusions from it	Skills workshops, laboratory practicals, handbooks, formative feedback on coursework assessments.	Laboratory notes, formal laboratory report, coursework assessments			

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?				
(viii) Skills for lifelong learning						
 Students should be able to keep an ordered set of course notes organise their time effectively assimilate and draw accurate conclusions from a wide variety of data effectively communicate scientific conclusions in both written and oral form 	Professional practice tutorials, compulsory attendance at core learning activities, specific instruction in lectures and seminars, formative feedback on presentations and written material	By keeping ordered notes, by attending sessions and being punctual, through regular coursework assessment and end of semester examinations, reports and presentations.				

10. Progression points:

This programme does not follow the standard regulations for Undergraduate Taught Provision

In cases where a student has failed to meet a requirement to progress, they will be required to withdraw from the course.

Progression from Year 0 to Year 1 of the Chemistry programme

- Students will be required to pass all Foundation Year modules
- Modules CH0061, CH0062, CH0063 & FS0031 will need to be passed with a mark of at least 40%.
- Module CH0061 requires a mark of at least 40% in the final exam.
- Module CH0062 requires at least 75% completion of the lab sessions
- Module FS0031 requires a mark of at least 40% in the final exam

Resits (or reassessments) will be offered for all modules except for CH0062 Introductory Chemistry Practical. Reassessment will ordinarily be offered on one occasion only.

Where a student fails to meet the progression requirement to obtain 40% in the examination component of CH0061 or FS0031 a resit of the examination will be offered even if the module has been passed.

A student failing to meet the progression requirement for the Chemistry programme but otherwise passing all modules may be able to transfer to another course provided the progression requirements for it have been met.

11. Special features:

None.

12. Indications of programme quality

The teaching methodology has been informed by experience teaching the Interdisciplinary Science degree programme to a diverse range of students with widely varying mathematical abilities. Competency-based mathematics has proven very effective in this context. The Methods and Techniques module was informed by similar modules in the IScience course.

Appendix 1: Programme Structure (Programme Regulations)

There are four 15 credit modules and two 30 credit modules. All students are required to take all modules.

	Module Code	Module Title	Credits
Semester 1			
	FS0011	Science 1: Materials	15
	FS0031	Mathematics 1	15
Semester 2			
	CH0062	Introductory Chemistry Practical	15
	FS0013	Science 3: Heat and Energy	15
Year Long			
	CH0061	Introduction to Chemistry	30*
	CH0063	Methods, Techniques and Skills	30*

* Year-long 30 credit module split roughly 15:15 over the two semesters.

Appendix 2: Module Specifications

See link below and select Chemistry. For the STEM Modules, select Foundation (STEM).

http://www2.le.ac.uk/offices/sas2/courses/documentation/2017-2018/ug/modules-campusbased

Appendix 3: Skills Matrix

None.