

For students entering in 2017/18 Date amended: Feb 2019

1. Programme Title(s) and UCAS code(s):

BSc Chemistry F100 BSc Chemistry with a Year in Industry*

BSc Chemistry with Forensic Science F1F4 BSc Chemistry with Forensic Science with a Year in Industry*

BSc Pharmaceutical Chemistry F154

BSc Pharmaceutical Chemistry with a Year in Industry*

* - selected when on course

[BSc Chemistry with a Year Abroad; BSc Chemistry with Forensic Science with a Year Abroad & BSc Pharmaceutical Chemistry with a Year Abroad are also *exit awards only* for students failing to progress on the equivalent MChem programmes – see MChem programme specifications]

2. Awarding body or institution:

University of Leicester

3. a) Mode of study:

Full time

b) Type of study:

Campus based

4. Registration periods

The normal period of registration is three years (four years for degrees with a year in industry or students coming through the STEM foundation route; five years if both).

The maximum period of registration is five years (six years for degrees with a year in industry or students coming through the STEM foundation route).

5. Typical entry requirements:

A-level ABB or equivalent and GCSE Maths grade A

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to provide a broad and in depth understanding of ideas central to chemistry

- To train students in the practical skills necessary for the safe manipulation of chemicals
- To generate interest in, and understanding of, the wider role of chemistry in society e.g.

health, industry

- To enable students to develop independent learning skills as well as the experience of working as part of a team
- To stimulate intellectual development, develop powers of critical analysis and ability to solve problems
- To enhance written and oral communication skills
- To provide students with training in mathematical techniques and IT skills
- To introduce student to chemical research methodology through carrying out a research project
- To introduce students to a some topics of current chemical research
- To equip students with the knowledge and generic skills for employment or further training in R&D, science based industry and establishments, education, and for training at management levels in other professions.

In addition for the "with a Year in Industry" variants:

• To provide students with an experience of the application of chemistry and professional skills in an industrial environment and to reinforce knowledge through its use in different environments.

Additional aims and objectives for related degrees

Chemistry with Forensic Science

- To provide an understanding of the requirements of a forensic investigation from evidence collection through to court proceedings.
- To provide an understanding of the different types forensic evidence and the techniques for forensic analysis and the limitations and reliability of some of these methods

Pharmaceutical Chemistry

- To provide a broad understanding of ideas central to biochemistry
- To provide a broad understanding of the processes involved in development of new drugs including drug design, discovery, mode of action and production

8. Reference points used to inform the programme specification:

- QAA Frameworks for Higher Education Qualifications in England Wales and Northern Ireland
- QAA Benchmark Statement for <u>Chemistry 2014</u>
- QAA subject review
- PDR report (May 2011)
- University Learning Strategy
- University Employability Strategy
- NSS 2014
- First destination survey
- External examiners reports
- RSC accreditation [<u>http://www.rsc.org/Education/courses-and-careers/accredited-courses/index.asp</u>],

9. Programme Outcomes:

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?				
(a) Disc	(a) Discipline specific knowledge and competencies					
(i) M	astery of an appropriate body of kr	owledge				
Memorization and understanding of basic chemistry theory across all 3 main areas of chemistry* (organic, inorganic and physical) and model problems, practical techniques.	Lectures, Specified Reading, Workshops, Tutorials. Practicals, Computer aided learning	Written exams, tutorial work				
Detailed knowledge of selected topics in at least 2* of the broad areas of Chemistry	Lectures, Directed Reading, Workshops, Tutorials, project supervision, computer aided learning	Written exams,				
Specific to Chemistry with Forensic Science: Knowledge of forensic methods of evidence collection and analysis and the British criminal justice system}	Lectures, workshops, tutorials, practicals	Written exams, practical reports				
Specific to Pharmaceutical Chemistry: Knowledge and understanding of biochemistry	Lectures, workshops, tutorials, practicals	Written exams				
Knowledge of processes of drug discovery	Lectures, workshops, tutorials	Written exams				

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
(II) Understal	nding and application of key concep	ts and techniques
Ability to apply chemical concepts in new situations e.g. ability to predict physical and chemical properties by comparison with analogues. Ability to apply logic and chemical knowledge to make deductions based on (limited) evidence Practical demonstration of experimental method. Professional use of standard equipment, knowledge of safety procedures	Supervised laboratory work Lectures Problem solving, 3rd yr Project	Lab samples, associated data, lab- notebooks and reports Written examinations Assessed problems, Project report
	(iii) Critical analysis of key issue	s
Critical analysis of chemical information Summarise key findings of scientific papers. Abstract writing. Knowledge of limitations of theory in some areas	Progressively, particularly year 3 theory modules and 3 rd year project	Written examinations, Laboratory notebooks, Project report
Specific to Chemistry with Forensic Science: Ability to analyse forensic evidence and appreciate reliability of conclusions	Problem based learning	Assessed exercises, project
(iv)	Clear and concise presentation of r	material
Presentation of chemical information in appropriate formats Participation in scientific discussion Short seminar	Lectures, tutorials, Project supervision Workshop/ group exercises	Laboratory notebooks Project reports Group presentations Project presentation
(v) Critic	al appraisal of evidence with appro	priate insight
Experimental method Project design	Lectures, practical classes Project supervision	Written examinations Project reports
	vi) Other discipline specific compete	· · ·
Response to questioning Short seminar Extended seminar	Tutorials, Group project supervision Project supervision	Oral assessment (vivas) Presentation assessment
	(b) Transferable skills	
	(i) Oral communication	
Response to questioning Short seminar Extended seminar	Tutorials, Group project supervision Project supervision	Oral assessment (vivas) Presentation assessment
	(ii) Written communication	·
CVs Laboratory notebook Report writing Science communication	CV induction Lecture, example Writing workshops Workshop	Assessed lab-notebook Project reports Assessed essays

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?		
(iii) Information technology				
Basic IT skills Use of spreadsheets Basic word processing Use of Chemical Software, e.g. drawing or molecular modelling	Workshops Lab data analysis Projects Lab and Project reports	Assessed tasks Project report Laboratory assessment and projects		
	(iv) Numeracy			
Use of analytical and graphical methods	Practice throughout course	Written examinations, project reports		
	(v) Team working			
Scientific discussion Organization, time management, recognition of individual strengths	Group problem solving Group projects, Business Game	Group assessment (outcomes and oral questioning)		
(vi) Problem solving				
Ability to solve chemical problems.	Lectures, problem workshops, group work, projects	Marked problems, Exams, Group work assessment, project assessment		
	(vii) Information handling			
Gather, retrieve and manipulate chemical evidence and information from a variety of sources and be able to analyse and use it to support a chemical argument	Labs, projects, chemical abstracts exercise, problem workshops	Marked problems, Exams, Group work assessment, project assessment		
	(viii) Skills for lifelong learning			
Study skills Time management Commercial awareness Information retrieval For students undertaking an	Resource based learning lab–work and projects careers advice, lectures from visiting industrialists, business game library exercises Industrial Experience	Open note exams Meeting deadlines project assessment		
industrial placement: Cultural Integration				

*For Pharmaceutical Chemistry (PC) there is less coverage of inorganic and physical chemistry, from year 3 onwards, the detailed knowledge is in organic chemistry and pharmaceutical chemistry (PC).

10. Progression points:

Students must pass all the practical modules in year 1 and 2 or their programme will be terminated. In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

Transfer to MChem degrees: Students may be permitted to transfer onto an MChem degree at the end of the first year if they average more than 50% across the first year examinations and assessments. Students may only transfer at the end of the second year if they achieve an average of 58%* or higher across their second year examinations and assessments, and have no re-sits following the midsummer examinations.

* Students scoring less than 58% will only be considered in exceptional circumstances.

<u>Transfer between different degrees:</u> Transfer from BSc Pharmaceutical Chemistry to BSc or MChem Chemistry or from BSc Chemistry with Forensic Science to BSc or MChem Chemistry is allowed at the end of the 1st year (and in exceptional cases at the end of the 2nd year) but transfer the other way i.e. BSc Chemistry to BSc Pharmaceutical Chemistry or BSc Chemistry to BSc Chemistry with Forensic Science is only allowed at the start of the 1st year (within the first two weeks of the first semester). Note: any transfer from BSc to MChem is subject to the additional requirements set out above.

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> <u>Regulation 5</u>.

12. Special features:

Small group tutorials, group problem solving, research based projects, links with industry, problem and context-based learning.

Placements

Students undertake a year in industry between the second and third years of their programme. Progression onto the Year in Industry placement preparation module will require a first year credit weighted average of 55%. Students who undertake the placement preparation module, but do not obtain a placement or do not satisfactorily complete (attendance, participation and completion of set tasks) the placement year will be transferred to the standard degree programme. As a condition of the 'with Industry' programme, students are required to undertake preparatory training during the second year of their degree.

Students are responsible for securing their own placement but will receive support in this from the Career Development Service.

Once in placement, students will need to register their University 'attendance' by logging on to a dedicated Blackboard site once a week. In the course of the placement the student will receive one or two visits from a member of staff. The second 'visit' can be in the form of a Skype call. Should a student secure an overseas placement both visits will typically be delivered via a Skype call.

While in placement, students will be required to complete an online log. The placement log requires students to undertake reflective activities which are marked on a pass/fail basis. This, together with the final summative reflective report, constitutes the assessment for the placement year. Students have to submit the final report within one month of finishing the placement, and are allowed to resubmit once if required.

If a student fails to secure a placement or does not meet the academic progression requirements they will be transferred to the non-industry variant of their degree programme.

13. Indications of programme quality

All BSc degrees were accredited by the RSC in Jan 2016

14. External Examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports can be found <u>here</u>.

Appendix 1: Programme structure (programme regulations) (overleaf)

Appendix 2: Module specifications

See module specification database http://www.le.ac.uk/sas/courses/documentation

Appendix 3: Skills matrix

BSc CHEMISTRY

FIRST YEAR MODULES

SEMESTER 1

Core Modules		Credits
CH1000	CHEMICAL PRINCIPLES	15
CH1002	ORGANIC STRUCTURES AND FUNCTIONAL GROUPS	10
CH1003	MATHS FOR CHEMISTS	10
CH1041	CHEMISTRY SPECIAL TOPICS PART 1	15
CH1061	CHEMISTRY PRACTICAL PART A	15
	Semester Tota	l 65
	SEMESTER 2	
Core Modules		Credits
CH1008	ORGANIC REACTIVITY AND MECHANISM	10
CH1006	COORDINATION CHEMISTRY	10
CH1007	THERMODYNAMICS & KINETICS	10
CH1042	CHEMISTRY SPECIAL TOPICS PART 2	10
CH1062	CHEMISTRY PRACTICAL PART B	15

Semester Total 55

Note: CH1003 and CH1061 are both year-long modules.

SECOND YEAR MODULES

SEMESTER 1

Core Modules		Credits
CH2005	BIFUNCTIONAL MOLECULES	10
CH2007	PHYSICAL CHEMISTRY OF COLLOIDS	10
CH2010	MOLECULAR SPECTROSCOPY	10
CH2071	CHEMISTRY PRACTICAL PART A	15
CH2013	SCIENCE COMMUNICATION AND CAREER SKILLS PART 1	5

Optional Modules

10 CREDITS SELECTED FROM:

CH2023	MATERIALS SCIENCE		10
CH2040	INTRODUCTION TO ANALYTICAL CHEMISTRY		10
		Semester Total	60

SEMESTER 2

Core Modules		Credits
CH2006	ORGANOMETALLIC CHEMISTRY	10
CH2009	CHEMISTRY OF RINGS	10
CH2011	KINETICS AND MECHANISM	10
CH2072	CHEMISTRY PRACTICAL PART B	20

Optional Modules

10 CREDITS SELECTED FROM:

		Semester Total	60
CH2041	BIOANALYTICAL CHEMISTRY		10
CH2021	POLYMER CHEMISTRY		10

Note: CH2013 is a year-long module.

THIRD YEAR MODULES

SEMESTER 1

Core Modules		Credits	;
CH3251	CHEMISTRY PROJECT (PART 1)	20	
CH3201	ADVANCED ORGANIC CHEMISTRY	15	
CH3202	ADVANCED INORGANIC CHEMISTRY	15	
CH3200	CHEMISTRY GENERAL SKILLS	5	
	Se	mester Total 55	;
SEMESTER 2			

SEMESTER 2

Core Modules	
	CH3252

	CH3252	CHEMISTRY PROJECT PART 2		20
	CH3207	INDUSTRIAL CHEMISTRY		15
	CH3206	ADVANCED ANALYTICAL CHEMISTRY		15
Optional Modules				
	15 CREDITS S	ELECTED FROM:		15
	CH3203	ADVANCED PHYSICAL CHEMISTRY		15
	CH3204	BIOLOGICAL CHEMISTRY		15
	CH3205	METALS IN ORGANIC SYNTHESIS		15
			Semester Total	65

Note: for all third year BSc chemistry projects in all degrees, it is expected that a proportion of the work for Part II, credited in the second semester, will be carried out in the first semester. CH3200 and CH3207 are both year-long modules.

BSc CHEMISTRY WITH FORENSIC SCIENCE

FIRST YEAR MODULES

SEMESTER 1

Core Modules		Credits
CH1000	CHEMICAL PRINCIPLES	15
CH1002	ORGANIC STRUCTURES AND FUNCTIONAL GROUPS	10
CH1003	MATHS FOR CHEMISTS	10
CH1030	INTRODUCTION TO FORENSIC SCIENCE	10
CH1063	CHEMISTRY PRACTICAL (FORENSIC) PART A	10
LW1173	ANALYSING THE ENGLISH LEGAL SYSTEM	10
Semester To	otal	65
	SEMESTER 2	
Core Modules		Credits
CH1008	ORGANIC REACTIVITY AND MECHANISM	10
CH1006	COORDINATION CHEMISTRY	10
CH1007	KINETICS AND THERMODYNAMICS	10
CH1030	INTRODUCTION TO FORENSIC SCIENCE	5
CH1064	CHEMISTRY PRACTICAL (FORENSIC) PART B	10
LW1174	LAW, JUSTICE & SOCIETY	

Semester Total 55

Credits

Note: CH1003, CH1030 and CH1063 are year-long modules.

SECOND YEAR MODULES

SEMESTER 1

Core Modules			Credits
CH2005	BIFUNCTIONAL MOLECULES		10
CH2007	PHYSICAL CHEMISTRY OF COLLOIDS		10
CH2010	MOLECULAR SPECTROSCOPY		10
CH2040	INTRODUCTION TO ANALYTICAL CHEMISTRY		10
CH2071	CHEMISTRY PRACTICAL PART A		15
CH2013	SCIENCE COMMUNICATION AND CAREER SKILLS PART 1		5
		Semester Total	60

SEMESTER 2

Core Modules		Credits
CH2006	ORGANOMETALLIC CHEMISTRY	10
CH2009	CHEMISTRY OF RINGS	10
CH2011	KINETICS AND MECHANISM	10
CH2041	BIOANALYTICAL CHEMISTRY	10
CH2072	CHEMISTRY PRACTICAL PART B	20
		Semester Total 60

Note: CH2013 is a year-long module.

THIRD YEAR MODULES

SEMESTER 1

Core Modules

Modules		Credits
CH3251	CHEMISTRY PROJECT PART 1	20
CH3201	ADVANCED ORGANIC CHEMISTRY	15
CH3202	ADVANCED INORGANIC CHEMISTRY	15
CH3200	CHEMISTRY GENERAL SKILLS	5
	Semester Total	55

SEMESTER 2

Core Modules		Credits	5
CH3212	FORENSIC SCIENCE	15	5
CH3252	CHEMISTRY PROJECT PART 2	20)
CH3206	ADVANCED ANALYTICAL CHEMISTRY	15	5
Optional Modules			
15 CREDITS S	SELECTED FROM		
CH3203	ADVANCED PHYSICAL CHEMISTRY	15	
CH3204	BIOLOGICAL CHEMISTRY	15	
CH3205	METALS IN ORGANIC SYNTHESIS	15	
		Semester Total 65	5

Note: for all third year BSc chemistry projects in all degrees, it is expected that a proportion of the work for Part II, credited in the second semester, will be carried out in the first semester. CH3200 is a year-long module

BSc PHARMACEUTICAL CHEMISTRY

FIRST YEAR MODULES

SEMESTER 1

Core Modules			Credits
CH1000	CHEMICAL PRINCIPLES		15
CH1002	ORGANIC STRUCTURES AND FUNCTIONAL GROUPS		10
CH1003	MATHS FOR CHEMISTS		10
CH1031	PHARMACEUTICAL CHEMISTRY SPECIAL TOPICS PART 1		10
CH1061	CHEMISTRY PRACTICAL PART A		15
		Semester Total	60

SEMESTER 2

Core Modules			Credits
CH1008	ORGANIC REACTIVITY AND MECHANISM		10
CH1006	COORDINATION CHEMISTRY		10
CH1007	KINETICS AND THERMODYNAMICS		10
CH1032	PHARMACEUTICAL CHEMISTRY SPECIAL TOPICS PART 2		15
CH1062	CHEMISTRY PRACTICAL PART B		15
		Semester Total	60

Note: CH1003 and CH1061 are both year-long modules.

SECOND YEAR MODULES

SEMESTER 1

Core Modules			Credits
CH2005	BIFUNCTIONAL MOLECULES		10
CH2010	MOLECULAR SPECTROSCOPY		10
CH2013	SCIENCE COMMUNICATION AND CAREER SKILLS PART 1		5
CH2007	PHYSICAL CHEMISTRY OF COLLOIDS		10
CH2073	CHEMISTRY PRACTICAL (PHARMACEUTICAL) PART A		10
BS2513	PHYSIOLOGY AND PHARMACOLOGY 1		20
		Semester Total	65

SEMESTER 2

Core Modules			Credits
CH2009	CHEMISTRY OF RINGS		10
CH2006	ORGANOMETALLIC CHEMISTRY		10
CH2011	KINETICS AND MECHANISM		10
CH2041	BIOANALYTICAL CHEMISTRY		10
CH2074	CHEMISTRY PRACTICAL (PHARMACEUTICAL) PART B		15
		Semester Total	55

Note: CH2013 is a year-long module.

THIRD YEAR MODULES

SEMESTER 1

Core Modules		Credits
CH3201	ADVANCED ORGANIC CHEMISTRY	15
CH3202	ADVANCED INORGANIC CHEMISTRY	15
CH3251	CHEMISTRY PROJECT PART I	20
CH3200	CHEMISTRY GENERAL SKILLS	5
		Semester Total 55

SEMESTER 2

Core Modules

Modules			Credits
CH3252	CHEMISTRY PROJECT PART II		20
CH3204	BIOLOGICAL CHEMISTRY		15
CH3205	METALS IN ORGANIC SYNTHESIS		15
CH3211	PHARMACEUTICAL CHEMISTRY		15
		Semester Total	65

Note: for all third year BSc chemistry projects in all degrees, it is expected that a proportion of the work for Part II, credited in the second semester, will be carried out in the first semester. CH3200 is a year-long module

BSc PROGRAMMES WITH INDUSTRY

Students may elect to undertake an industrial placement during their third year of study.

FIRST AND SECOND YEAR MODULES As for the relevant named BSc degree.

THIRD YEAR MODULES

The third year of the course will be spent carrying out a project in an industrial placement. The work will be assessed on a pass/fail basis on the basis of a project report and a record of achievement. The marks from this year will not be included in the final degree assessment.

FOURTH YEAR MODULES

As for the 3rd year of the relevant named BSc degree.

Following successful completion of the year in industry, and satisfactory completion of the programme requirements (as defined by the University Scheme of Assessment) students shall be eligible to be considered for the award of a BSc in the relevant named area 'with a year in industry'.