

Programme Specification (Undergraduate)

Date created: 16/02/21 Last amended: 03/11/2022 Version no. 1

1. Programme title(s) and code(s):

BSc Applied and Environmental Geology F610 BSc Applied and Environmental Geology with a Year in Industry * BSc Applied and Environmental Geology with a Year Abroad*

Notes

* An award marked with an asterisk is only available as an exit award and is not available for students to register onto.

a) HECOS Code

HECOS Code	%
100395	67%
101104	33%

b) UCAS Code (where required)

F610

2. Awarding body or institution:

University of Leicester

3. a) Mode of study

Full-time

b) Type of study

Campus-based

4. Registration periods:

The normal period of registration is three years (four years for BSc degrees with a year in industry)

The maximum period of registration is five years (six years for BSc degrees with a year in Industry)

5. Typical entry requirements

A-level: ABB including at least two from: Biology, Chemistry, Computer Science, Environmental Science, Geography, Geology, Maths or Physics.

BTEC Diploma: DDD in appropriate subject area.

Access to HE courses in Science and Engineering: 45 L3 credits, including 30 at Distinction and remaining

L3 credits at least at Merit.

International Baccalaureate: Pass diploma with 30 points including some science based subjects at higher level.

For the aims, learning outcomes and application criteria for the GCSA Year Abroad please see <u>https://le.ac.uk/study/undergraduates/courses/abroad</u>

6. Accreditation of Prior Learning

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims

The programme aims to

- 1) provide students with a breadth of knowledge of Applied and Environmental Geology, and exposure to some areas of research at the cutting edge of the Earth Sciences;
- provide students with a thorough understanding of the theoretical and practical applications of Applied and Environmental Geology in the study of the Earth, and environmental and societal issues;
- equip students with transferable and subject-specific skills necessary for a career in the Earth Sciences, other science based industries, education, and for training at management levels in other professions;
- 4) promote the development of ICT and written, oral and presentation skills appropriate for a science graduate at the Bachelors level;
- 5) stimulate students to develop a wide range of independent and team skills;
- 6) ensure that students benefit from an extensive programme of work in the field, developing fundamental geological knowledge through observation and critical analysis as well as developing personal and character skills;
- 7) provide students, via the curriculum and research expertise of staff, with the intellectual development and stimulus for research and further study at a post-graduate level;
- 8) provide students with the environment in which to develop their interest in Applied and Environmental Geology;
- 9) enthuse and motivate all students to achieve their full potential in their degree course.

In addition, for the 'with Industry' variants

For the Year in Industry variant only, these additional programme aims apply:

- Prepare students for career and training opportunities which relates to their degree in both the private and public sectors, and voluntary organisations.
- Construct effective applications for placement opportunities
- Provide students the opportunity to recognise suitable plans for transitioning into the workplace

For the 'with a year abroad' variant only, these additional programme aims apply:

- Develop enhanced employability skills
- Experience living and learning in a different cultural environment
- Develop Global Citizenship competencies
- Build new social, academic and professional international networks

8. Reference points used to inform the programme specification

Degree programmes broadly concerned with earth sciences

2.4 It is anticipated that all graduates have appropriate knowledge of the main aspects of the Earth sciences, as listed:

- A holistic view of the present and past interactions between components of the Earth system, including the effects of extra-terrestrial influences on these interactions.
- The cycling of matter and the flows of energy into, between and within the solid Earth, the Earth's surface, the hydrosphere, the atmosphere and the biosphere.
- The study of the biological, chemical and physical processes that underpin our understanding of the structure, materials and processes relevant to the Earth and planetary bodies.
- The central paradigms in the Earth sciences: uniformitarianism (the present is the key to the past); the extent of geological time; evolution (the history of life on Earth); and plate tectonics
- Geological time, including the principles of stratigraphy, the stratigraphic column, the methods of geochronology, the rates of Earth processes, major events in Earth history, the evolution of life as revealed by the fossil record, the Quaternary and Anthropocene.
- Collection and analysis of Earth science data in the field, and the appropriate presentation, manipulation and extrapolation of these sometimes incomplete data in both two and three- dimensions, including the generation of geological maps and cross sections.
- The study of structures, materials and processes that includes an appreciation of temporal and spatial variations at appropriate scales.
- The study of the structure, the composition and the materials of the solid Earth (core, mantle, crust, asthenosphere, lithosphere and so on), the hydrosphere, the atmosphere, the cryosphere and the biosphere, and the processes operating within and between them.
- An understanding of other planetary bodies.
- Earth science terminology, nomenclature and classification of rocks, minerals, fossils, and geological structures.
- The identification of rocks, minerals, fossils, and geological structures.
- Surveying and measurement both in the field and laboratory, and using quantitative and instrumental techniques.
- An awareness that the understanding and knowledge gained from the subject and its application has to be considered within a wider socio-economic and environmental context.
- 2.5 Typical programme elements might include: engineering geology; geochemistry; geological mapping; geomorphology; geophysics; geographic information systems and remote sensing applications; hydrogeology; igneous and metamorphic petrology, local and global tectonics; mineralogy; mineral deposits; natural hazards;; palaeobiology; palaeoclimatology; palaeontology; petroleum geology; petrology; sedimentology; stratigraphy; and structural geology.
- 2.6 Applications of the subject areas might include the exploration, development and remediation/storage of Earth resources (e.g. hydrocarbons, minerals, water, carbon dioxide sequestration, aggregates & radioactive waste), using past climates to understand climate change and the impact on the environment and society, civil engineering projects (e.g. land restoration, site investigations and waste disposal and understanding geohazards (e.g. flooding, earthquakes, volcanic eruptions and landslides.In addition, the Programme Specifications were informed by:
 - QAA Benchmarking Statement
 - Framework for Higher Education Qualifications (FHEQ)

- UK Quality Code for Higher Education
- University Education Strategy
- University Assessment Strategy
- University of Leicester Periodic Developmental Review Report
- External Examiners' reports (annual)
- United Nations Education for Sustainable Development Goals
- Student Destinations Data

9. Programme Outcomes

Unless otherwise stated, programme outcomes apply to all awards specified in 1. Programme title(s).

a) Discipline specific knowledge and competencies

i) Mastery of an appropriate body of knowledge

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Discuss and explain the general principles and techniques of Geology, including the structure, composition and evolution of the Earth and its interrelationships with the hydrosphere, cryosphere, biosphere, and atmosphere and the perturbations of these systems by extraterrestrial influences.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problem- solving classes.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Coursework; Module tests; Essays; Assessment of field reports and maps; Poster presentations; Field notebooks; Problem-based exercises, written reports.
Describe the issues associated with exploitation of resources and the protection of the environment.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problem- solving classes.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Coursework; Module tests; Essays; Assessment of field reports and maps; Poster presentations; Field notebooks; Problem-based exercises, written reports.

ii) Understanding and application of key concepts and techniques

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Describe, identify and interpret a range of geological materials in the laboratory and field; select appropriate techniques to enable this; and explain geological relationships.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Field notebooks.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Examine, record and interpret the geology (senso lato) of a region via a range of field-based techniques.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Independent field work.	Practical examination; Report and field notebook and map assessment
Explain geological time, rates and fluxes, and the techniques required to determine them.	Lectures, Tutorials, Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problem- solving classes.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations.
Select geological knowledge and data for modeling purposes (for example, for evaluation of scientific hypotheses, for hazard mitigation, or for resource estimation).	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; field notebooks.
Describe the importance of geological materials as resources, their exploitation and associated environmental impact.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written exam, including short answer questions; group oral presentation.
Discuss and explain the processes of mineral deposit formation and those processes that disseminate contaminants through the environment.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; field notebooks.
Demonstrate and apply knowledge of safety procedures in the field.	Field-based practical classes and demonstrations	Completion of risk assessments; Demonstration and role play Application during Field Courses.

iii) Critical analysis of key issues

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Identify theories paradigms, concepts and principles; apply scientific principles to evaluate current geological paradigms; and evaluate environmental and societal aspects of the Earth's resources.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Coursework; Module tests; Essays; Tutorial discussions; Dissertations.

iv) Clear and concise presentation of material

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Synthesise and interpret results, in order to effectively communicate (via written, oral, graphical means) data and ideas to a range of audiences.	Tutorials; Group seminars; Practical classes	Essays, essay-based examinations; independent projects; contributions to tutorial discussions; poster displays; reports; group talks.

v) Critical appraisal of evidence with appropriate insight

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Debate geological ideas . Construct and test scientific hypotheses and analyse using geological data.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Directed reading; Problem-solving classes.	Essays; essay- and practical examinations; reports; presentations; Dissertations.

vi) Other discipline specific competencies

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Conduct a range of field- based studies (e.g. geological mapping, and recording of field observations).	Field courses, practical classes and demonstrations.	Report, field notebook, and geological map. Practical examinations.
Develop responsibility for the immediate working environment.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.
Describe risks for hazard assessment for field-based work. Identify safe practice.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.
Explain the geological structure and history of an area.	Field classes, lectures, practical classes.	Independent field project report.

b) Transferable skills

i) Oral communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Present geological data and theories using appropriate methods.	Tutorials; Group seminars/discussions; field-based presentations.	Oral presentations in tutorials and classes.
Discuss and review geological topics in tutorial and other group discussions, and respond effectively to questioning.	Tutorials; Group seminars/discussions; field-based presentations.	Oral presentations in tutorials and classes.

ii) Written communication

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Communicate effectively and appropriately in a variety of written formats including essays, reports, projects, CVs and posters	Tutorials, demonstrations and guidance notes	Assessed CVs, essays, reports, poster displays, and examinations
Draw and describe geological features, specimens and thin sections.	Practical classes, demonstrations, fieldwork, independent project work	Field notebooks; assessed practical folders; assessed reports.

iii) Information technology

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Use spreadsheets or other software to enter, manipulate and display numerical data.	Subject-embedded exercises. Tutorials.	Assessed report; practical assignments.
Use appropriate software packages to prepare written reports, essays, dissertations, posters and presentations (e.g. Word, PowerPoint)	Report-writing for tutorials; subject-embedded exercises; presentation to tutorial groups and classes.	Assessed report; tutorial and practical assignments; independent work assignments.
Critically review information from electronic sources.	Tutorial and class supported information retrieval for projects, essays, reports and dissertations.	Assessed report; tutorial and practical assignments; independent work assignments.

iv) Numeracy

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Select appropriate numerical, statistical and graphical methods to explain and interpret geological concepts.	Introduced in the first year within practical classes and tutorials.	Mid-semester progress tests and as components within subject specific modules throughout the three years of study; feedback on practical class assignments.

v) Team working

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Organize and workeffectively within a team, and evaluate performance of self and of team.	Tutorials, seminars, practical classes, project work, and field-based discussions.	Tutorial-based assessments; assessed practical work, team report and team fieldwork.
Identify self and team goals and responsibilities for team working.	Tutorials, seminars, practical classes, project work, and field-based discussions.	Tutorial-based assessments; assessed practical work, team report and team fieldwork.

vi) Problem solving

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Solve numerical, spatial, temporal and geometrical problems.	Lectures, tutorials, practical and field classes, group work, projects.	Assessment of field notebooks, practical class work, project work and reports.
Solve problems with incomplete or contradictory information.	Lectures, tutorials, practical and field classes, group work, projects.	Assessment of field notebooks, practical class work, project work and reports.

vii) Information handling

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Effectively search for, gather and utilise information relevant to geological problem solving.	Lectures, tutorials, practicals, study skills within tutorials, field and lab-based projects.	Tutorial assignments, project work.

viii) Skills for lifelong learning

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?
Demonstrate intellectual independence	All of the above, and particularly independent project work.	Assessed independent work. Coursework within modules
Develop and implement a personal plan of work to meet a deadline.	All of the above, and particularly independent project work.	Assessed independent work.
Identify targets for personal, career and academic development.	All of the above, and particularly independent project work.	Assessed independent work. Successful Placement for Year in Industry students.

For Year in Industry students (only)

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated
On Placement		
 Apply the theoretical and practical aspects of the material studied at the University and demonstrate the personal and professional skills necessary for your role within the organisation. 	Students undertake a minimum of 9 months experience in the workplace. Project supervision, independent research	Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome. Assessed by a Placement Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis.

			Formative feedback during a Placement Visit (in person or via Skype) from Placement Provider and Placement Tutor regarding reflection on skills development, areas of strength and weakness and contribution to the workplace.
2.	Compose a Professional Development Plan considering your strengths, development areas and motivations for your next step	Students undertake a minimum of 9 months experience in the workplace. Project supervision, independent research	Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome. Assessed by a Placement Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis. Formative feedback during a Placement Visit (in person or via Skype) from Placement Provider and Placement Tutor regarding reflection on skills development, areas of strength and weakness and contribution
3.	Modify your CV to include the skills and experience you have gained through your significant experience gained in the past 12 months.	Students undertake a minimum of 9 months experience in the workplace. Project supervision, independent research	to the workplace. Completion of Monthly Reflective Journals to record skills development, major achievements, key areas of work, learning points and challenges overcome. Assessed by a Placement Portfolio, comprising of a Reflective Summary, Professional Development Plan, and Updated CV (excluded from word count) to formally assess on a pass or fail basis.

		Placeme Skype) f and Plac reflectio develop and wea	ve feedback during a ent Visit (in person or via from Placement Provider cement Tutor regarding on on skills ment, areas of strength akness and contribution workplace.	
Intended Learning Outcomes	Teaching and Learning Methods		How Demonstrated?	
On completion of the year abroad st	udents can be expected to:		1	
 Reflect on skills learned and knowledge gained and explain how these may contribute to future academic development. Demonstrate improved professional communication, presentation and interpersonal skills, networking skills and, if 	Global Success toolkit (ind written guidance and wor to be delivered in partner with CDS). Experience of living and st overseas.	rkshops rship	Updated Curriculum Vita formally assessed). Seminar presentations a contributions to tutoria final year of study at Uo	and Is during
Demonstrate a range of self- management and life-long learning skills including time management, adaptability, confidence, independence and enterprise.	Experience of studying in overseas institution.	an	Assessments undertake overseas.	n

10. Progression points

This programme follows the standard Scheme of Progression set out in <u>Senate Regulations</u> – see the version of Senate Regulation 5 governing undergraduate programmes relevant to the year of entry.

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course

Progression onto a year in industry

The progression criteria for a 'year in industry' programme is to meet the requirements needed to progress to the next level of study as outlined in the University's Senate 5 Regulations.

Where a degree programme has a requirement from a Professional or Statutory Body (PSRB) for academic attainment for students undertake a year in industry are exempt from the proposed new progression criteria and will continue to uphold existing progression criteria.

A Placement Student will revert back to the degree without Year in Industry if:

- 1. They fail to secure a year in industry role.
- 2. They fail to pass the assessment related to the year in industry.

- 3. The year in industry ends early due to the behaviour of the Placement Student not being in accordance with the University's Regulations for Students, Student Responsibilities. The Placement Student will need to suspend for the remainder of the academic year. To prevent such an incident from happening, processes are in place to identify any possible issues or concerns early in the year in industry role. This includes a start check, regular communications, visits to the workplace (physical and/or virtual) and evaluation. Communication and contact between the Placement Student, Placement Provider and University provides support should issues arise.
- 4. They discontinue their Year in Industry. A student can return to their campus-based studies no later than the end of teaching week 2 at the start of the academic year should they decide to discontinue their Year in Industry they should complete a Course Transfer From. If a Placement Student decides to discontinue their Year in Industry after this point they will need to suspend their studies for the remainder of the academic year.

Nine months is the minimum time required for a year in industry to be formally recognised. If the year in industry is terminated earlier than 9 months as a result of event outside of the Placement Students control (for example redundancy, or company liquidation), the following process will be adopted:

- If the Placement Student has completed 1 6 months, they will be supported to search for another placement to take them up to the 9 months required for the year in industry to be formally recognised. If the Placement Student does not find a placement to meet this criteria they will be required to suspend and transferred onto the degree without Year in Industry.
- 2. If the Placement Student has completed 7-8 months, they will be supported to search for another placement to take them up to the 9 months required for the year in industry to be formally recognised. If the Placement Student cannot source an additional placement to take them to 9 months, assessments related to the year in industry will be set for the student to make it possible for the individual learning objectives for the year in industry to be met. This will allow the Year in Industry to be recognised in the degree certificate.
- 3. A Placement Student will not be permitted to undertake a placement which runs across two academic years.

Students need to achieve a credit-weighted average of 55% in the second year of their degree programme, and be carrying no failed modules, in order to progress to the year abroad. Students with mitigating circumstances may request that their circumstances be taken into consideration. The final determination should be made by the relevantBoard of Examiners.

A Student will revert back to the without a year abroad variant of the programme if:

- 1. They pass less than 50% of the equivalent of 120 UoL credits.
- 2. They pass between 50 and 80% of the equivalent of 120 UoL credits and do not pass a resit.
- 3. The year abroad ends early due to the behaviour of the Student not being in accordance with the University's Regulations for Students, Student Responsibilities. The Student will need to suspend for the remainder of the academic year. To prevent such an incident from happening, processes are in place to identify any possible issues or concerns during the risk assessment process, and via monitoringchecks during the year abroad. Communication and contact between the Student, the host university and UoL will ensure support is provided should issues arise.
- 4. The student discontinues their year abroad. A student may return to their campusbased studies no later than the end of teaching week 2 at the start of the academic year should they decide to discontinue their year abroad, and should complete a Course Transfer Form. If a student discontinues their year abroad after the end of

teaching week 2 at Leicester and before the end of their first semester abroad, they will be required to suspend their studies for the remainder of the academic yearand transfer to the standard variant of their degree.

Where a student successfully completes the first semester of their year abroad, but discontinues their placement prior to completion of the full academic year for any reason, consideration may be given to the awarding of a 'witha semester abroad' degree programme, as set out below:

- If a Student completes the first semester of their year abroad and subsequently
 discontinues prior to the end of their second semester, they will be required to
 suspend their studies for the remainder of the academic year, but will be deemed to
 have met the requirements to transfer to a 'with a semesterabroad' variant of their
 degree programme if they have passed the equivalent of 48 UoL credits.
- If the student has passed between 30 and 48 UoL credits, they may undertake resit opportunities offered by the host university where possible.
- If the student is not able to undertake resit assessments via their host university, fails resits, or passesfewer than the equivalent of 30 UoL credits, they will revert to the standard variant of their degree.

a) Course transfers

Course transfer may be considered at the end of year 1.

11. Criteria for award and classification

This programme follows the standard scheme of undergraduate award and classification set out in <u>Senate Regulations</u> – see the version of *Senate Regulation 5 governing undergraduate programmes* relevant to the year of entry.

12. Special features

Residential field courses

Group problem solving

Student centered learning – small-group tutorials

Field-based project

Accessible, extensive mineral, rock and fossils undergraduate teaching collections, including ore deposits

Modules incorporating industry-standard software training and application

Department-based specialist careers advisors

Placements

It is the student's responsibility to secure a year in industry role. Employer led activities provide a platform for students to engage with organisations who are recruiting students for year in industry roles.

When a Placement Student starts a year in industry, they will be required to complete health and safety documents and confirm they have completed a formal induction process no later than the 2nd week of placement. A Placement Student on the Year in Industry variant will also gain from being able to:

- 1. Apply the theoretical and practical aspects of the material studied at the University and demonstrate the personal and professional skills necessary for your role within the organisation.
- 2. Compose a Professional Development Plan considering your strengths, development areas and motivations for your next step
- 3. Modify your CV to include the skills and experience you have gained through your significant experience gained in the past 12 months

Year Abroad

It is the student's responsibility to apply for a year abroad, and to comply in full with the preparation process, which includes

- Attendance at the 'What's next?' talk, delivered in February
- Attendance at pre-departure talks/events
- Compliance with the risk assessment process

Students will be offered additional pre-departure workshops on intercultural competence, and post-placementworkshops on employability.

13. Indications of programme quality

Accreditation by the Geological Society of London.

The research interests of the staff strongly inform the teaching programme. External industry involvement with the development of parts of the teaching programme, including the integration of relevant software and access to case studies.

Quotes from recent External Examiners:

'The department is excellent and deserves its reputation as one of the leading centres of geoscience teaching/research in Europe.'

'I believe that the BSc and MGeol programmes in Applied and Environmental Geology to be of high quality, delivered by a dedicated set of professional academics. I was impressed by the diverse range of assessment styles and the extremely positive reactions of the students to the course and the staff team.'

'The Applied and Environmental Geology course delivers instruction and assessment across a wide range of subjects which provide a strong background and appropriate expertise for students wishing to achieve employment in Applied Geology.'

14. External Examiner(s) reports

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports for this programme can be found at <u>exampapers@Leicester</u> [log-in required]

Programme Specification (Undergraduate)

FOR ENTRY YEAR: 2023/24

Date created: 16/02/21 Last amended: 03/11/2022 Version no. 1

Appendix 1: Programme structure (programme regulations)

The University regularly reviews its programmes and modules to ensure that they reflect the current status of the discipline and offer the best learning experience to students. On occasion, it may be necessary to alter particular aspects of a course or module.

Updates to the programme

Academic year affected	Module Code(s)	Update
2022/23	GL1104	Module title changed to 'Natural Resources and Energy for the 21 st Century'
2023/24	GL2101	Module title changed to 'Introduction to Geochemistry'
2023/24	GL2106	Module title changed to 'Mineral Resources for Net Zero Carbon 1'
2024/25	GL3113	Module title changed to 'The Mining Lifecycle (Field Course, Cornwall)
2024/25	GL3110	Module title changed to 'Mineral Resources for Net Zero Carbon 2'

BSc APPLIED AND ENVIRONMENTAL GEOLOGY

Level 4/Year 1 2023/24

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	30 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL1100	Tutorials	15 credits
Year long	GL1101	The Rock Cycle: our dynamic earth	30 credits
Sem 1	GL1102	Micro to Macro	15 credits
Sem 1	GL1103	Palaeobiology and the Stratigraphic Record	15 credits
Sem 2	GL1104	Natural Resources and Energy for the 21 st Century	15 credits
Sem 2	GL1105	Geological Maps and Structures	15 credits
Sem 2	GL1106	Introductory Field Course	15 credits

Notes

n/a

Option modules

n/a

Level 5/Year 2 2024/25

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	30 credits	45 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL2100	Geological Field Skills	30 credits

Delivery period	Code	Title	Credits
Sem 1	GL2103	Magmatic and Metamorphic Processes	15 credits
Sem 1	GL2106	Mineral Resources for net-zero Carbon 1	15 credits
Sem 1	GY2420	Climate Change: Impacts, Vulnerability and Adaptation	15 credits
Sem 2	GL2101	Introduction to Geochemistry	15 credits
Sem 2	GL2102	Structure and Tectonics	15 credits
Sem 2	GL2105	Depositional Processes and Environments	15 credits

Notes

n/a

Level 6/Year 3 2025/26

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GL3100	Field Based Project	30 credits
Sem 1	GL3102	Environmental Geoscience	15 credits
Sem 2	GL3101	Dissertation	15 credits
Sem 2	GL3109	Mineral Exploration, Economics and Sustainability	15 credits
Sem 2	GL3113	The Mining Lifecycle (Field course, Cornwall)	15 credits

Notes

n/a

Option modules

Delivery period	Code	Title	Credits
Semester 1	GL3118	Crustal Dynamics	15 credits
Semester 1	GY3435	Water Quality Processes and Management	15 credits
Semester 2	GL3110	Mineral Resources for net-zero Carbon 2	15 credits
Semester 2	GL3106	Planetary Science	15 credits
Semester 2	GL3108	Geological Application of Microfossils	15 credits
Semester 2	GY3434	Stable Isotopes in the Environment	15 credits
Semester 2	GY3438	River Dynamics	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc APPLIED AND ENVIRONMENTAL GEOLOGY WITH A YEAR IN INDUSTRY

Level 4/Year 1 2023/24

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	30 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL1100	Tutorials	15 credits
Year long	GL1101	The Rock Cycle: our dynamic earth	30 credits
Sem 1	GL1102	Micro to Macro	15 credits
Sem 1	GL1103	Palaeobiology and the Stratigraphic Record	15 credits
Sem 2	GL1104	Natural Resources and Energy for the 21 st Century	15 credits
Sem 2	GL1105	Geological Maps and Structures	15 credits
Sem 2	GL1106	Introductory Field Course	15 credits

Notes

n/a

Option modules

n/a

Level 5/Year 2 2024/25

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	30 credits	45 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL2100	Geological Field Skills	30 credits

Delivery period	Code	Title	Credits
Sem 1	GL2103	Magmatic and Metamorphic Processes	15 credits
Sem 1	GL2106	Mineral Resources for net-zero Carbon 1	15 credits
Sem 1	GY2420	Climate Change: Impacts, Vulnerability and Adaptation	15 credits
Sem 2	GL2101	Introduction to Geochemistry	15 credits
Sem 2	GL2102	Structure and Tectonics	15 credits
Sem 2	GL2105	Depositional Processes and Environments	15 credits

Notes

n/a

THIRD YEAR

Students who gain an industry placement will be assessed as per the standard model for undergraduate placements in the College of Science and Engineering. The marks from this year will not be included in the final degree assessment.

Year long	ADGL223	On Placement	0 credits

Level 6/Year 3 2026/27

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GL3100	Field Based Project	30 credits

Delivery period	Code	Title	Credits
Sem 1	GL3102	Environmental Geoscience	15 credits
Sem 2	GL3101	Dissertation	15 credits
Sem 2	GL3109	Mineral Exploration, Economics and Sustainability	15 credits
Sem 2	GL3113	The Mining Lifecycle (Field course, Cornwall)	15 credits

Notes

n/a

Option modules

Delivery period	Code	Title	Credits
Semester 1	GL3118	Crustal Dynamics	15 credits
Semester 1	GY3435	Water Quality Processes and Management	15 credits
Semester 2	GL3110	Mineral Resources for net-zero Carbon 2	15 credits
Semester 2	GL3106	Planetary Science	15 credits
Semester 2	GL3108	Geological Application of Microfossils	15 credits
Semester 2	GY3434	Stable Isotopes in the Environment	15 credits
Semester 2	GY3438	River Dynamics	15 credits

Notes

This is an indicative list of option modules and not definitive of what will be available. Option module choice is also subject to availability, timetabling, student number restrictions and, where appropriate, students having taken appropriate pre-requisite modules.

BSc APPLIED AND ENVIRONMENTAL GEOLOGY WITH A YEAR ABROAD

Level 4/Year 1 2023/24

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	45 credits	30 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL1100	Tutorials	15 credits
Year long	GL1101	The Rock Cycle: our dynamic earth	30 credits
Sem 1	GL1102	Micro to Macro	15 credits
Sem 1	GL1103	Palaeobiology and the Stratigraphic Record	15 credits
Sem 2	GL1104	Natural Resources and Energy for the 21 st Century	15 credits
Sem 2	GL1105	Geological Maps and Structures	15 credits
Sem 2	GL1106	Introductory Field Course	15 credits

Notes

n/a

Option modules

n/a

Level 5/Year 2 2024/25

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	30 credits	45 credits	45 credits
Optional	n/a	n/a	n/a

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Year long	GL2100	Geological Field Skills	30 credits
Sem 1	GL2103	Magmatic and Metamorphic Processes	15 credits
Sem 1	GL2106	Mineral Resources for net-zero Carbon 1	15 credits
Sem 1	GY2420	Climate Change: Impacts, Vulnerability and Adaptation	15 credits
Sem 2	GL2101	Introduction to Geochemistry	15 credits
Sem 2	GL2102	Structure and Tectonics	15 credits
Sem 2	GL2105	Depositional Processes and Environments	15 credits

Notes

n/a

THIRD YEAR MODULES 2025/26

The third year will be spent abroad at one of the University's partner institutions. Students will be required to reach a prescribed level of attainment in the work done abroad (a pass in Leicester terms according to the mark translation). Any student failing the year abroad component will revert back to the standard Leicester variant of their degree."

Level 6/Year 3 2026/27

Credit breakdown

Status	Year long	Semester 1	Semester 2
Core	n/a	45 credits	45 credits
Optional	n/a	15 credits	15 credits

120 credits in total

Core modules

Delivery period	Code	Title	Credits
Sem 1	GL3100	Field Based Project	30 credits
Sem 1	GL3102	Environmental Geoscience	15 credits
Sem 2	GL3101	Dissertation	15 credits
Sem 2	GL3109	Mineral Exploration, Economics and Sustainability	15 credits
Sem 2	GL3113	The Mining Lifecycle (Field course, Cornwall)	15 credits

Notes

n/a

Option modules

Delivery period	Code	Title	Credits
Semester 1	GL3118	Crustal Dynamics	15 credits
Semester 1	GY3435	Water Quality Processes and Management	15 credits
Semester 2	GL3110	Mineral Resources for net-zero Carbon 2	15 credits
Semester 2	GL3106	Planetary Science	15 credits
Semester 2	GL3108	Geological Application of Microfossils	15 credits

Semester 2	GY3434	Stable Isotopes in the Environment	15 credits
Semester 2	GY3438	River Dynamics	15 credits

Appendix 2: Module specifications

See undergraduate <u>module specification database</u> [login required] (Note - modules are organized by year of delivery).

Appendix 3: Skills matrix