

1. Programme Title(s) and UCAS code(s):

BSc Applied and Environmental Geology F610 BSc Applied and Environmental Geology with a Year in Industry *

* selected when on course

2. Awarding body or institution:

University of Leicester

3. a) Mode of study: Full time

b) Type of study:

Campus-based

4. Registration periods:

The normal period of registration is three years (four years for BSc degrees with a year in industry)

The maximum period of registration is five years (six years for BSc degrees with a year in Industry)

5. Typical entry requirements:

A-level: ABB including at least two from: Biology, Chemistry, Computer Science, Environmental Science, Geography, Geology, Maths or Physics

BTEC Diploma: DDD in appropriate subject area.

Access to HE courses in Science and Engineering: 45 L3 credits, including 30 at Distinction and remaining L3 credits at least at Merit.

International Baccalaureate: Pass diploma with 30 points including some science based subjects at higher level.

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to

- provide students with a breadth of knowledge of Applied and Environmental Geology, and exposure to some areas of research at the cutting edge of the Earth Sciences;
- provide students with a thorough understanding of the theoretical and practical applications of Applied and Environmental Geology in the study of the Earth, and environmental and societal issues;
- equip students with transferable and subject-specific skills necessary for a career in the Earth Sciences, other science based industries, education, and for training at management levels in other professions;

- 4) promote the development of ICT and written, oral and presentation skills appropriate for a science graduate at the Bachelors level;
- 5) stimulate students to develop a wide range of independent and team skills;
- ensure that students benefit from an extensive programme of work in the field, developing fundamental geological knowledge through observation and critical analysis as well as developing personal and character skills;
- provide students, via the curriculum and research expertise of staff, with the intellectual development and stimulus for research and further study at a postgraduate level;
- 8) provide students with the environment in which to develop their interest in Applied and Environmental Geology;
- 9) enthuse and motivate all students to achieve their full potential in their degree course.

In addition, for the 'with Industry' variants

• To provide experience of applications of geology and other professional skills in Industry and to reinforce knowledge through their use in different environments.

8. Reference points used to inform the programme specification:

QAA Benchmarking Statement: <u>Earth sciences, environmental sciences and environmental studies</u> (2014)

Degree programmes broadly concerned with earth sciences

2.4 It is anticipated that all graduates have appropriate knowledge of the main aspects of the Earth sciences, as listed:

- A holistic view of the present and past interactions between components of the Earth system, including the effects of extra-terrestrial influences on these interactions.
- The cycling of matter and the flows of energy into, between and within the solid Earth, the Earth's surface, the hydrosphere, the atmosphere and the biosphere.
- The study of the biological, chemical and physical processes that underpin our understanding of the structure, materials and processes relevant to the Earth and planetary bodies.
- The central paradigms in the Earth sciences: uniformitarianism (the present is the key to the past); the extent of geological time; evolution (the history of life on Earth); and plate tectonics
- Geological time, including the principles of stratigraphy, the stratigraphic column, the methods of geochronology, the rates of Earth processes, major events in Earth history, the evolution of life as revealed by the fossil record, the Quaternary and Anthropocene.
- Collection and analysis of Earth science data in the field, and the appropriate presentation, manipulation and extrapolation of these sometimes incomplete data in both two and three-dimensions, including the generation of geological maps and cross sections.
- The study of structures, materials and processes that includes an appreciation of temporal and spatial variations at appropriate scales.
- The study of the structure, the composition and the materials of the solid Earth (core, mantle, crust, asthenosphere, lithosphere and so on), the hydrosphere, the atmosphere, the cryosphere and the biosphere, and the processes operating within and between them.
- An understanding of other planetary bodies.
- Earth science terminology, nomenclature and classification of rocks, minerals, fossils, and geological structures.
- The identification of rocks, minerals, fossils, and geological structures.
- Surveying and measurement both in the field and laboratory, and using quantitative and instrumental techniques.
- An awareness that the understanding and knowledge gained from the subject and its application has to be considered within a wider socio-economic and environmental context.

- 2.5 Typical programme elements might include: engineering geology; geochemistry; geological mapping; geomorphology; geophysics; geographic information systems and remote sensing applications; hydrogeology; igneous and metamorphic petrology, local and global tectonics; mineralogy; mineral deposits; natural hazards;; palaeobiology; palaeoclimatology; palaeontology; petroleum geology; petrology; sedimentology; stratigraphy; and structural geology.
- 2.6 Applications of the subject areas might include the exploration, development and remediation/storage of Earth resources (e.g. hydrocarbons, minerals, water, carbon dioxide sequestration, aggregates & radioactive waste), using past climates to understand climate change and the impact on the environment and society, civil engineering projects (e.g. land restoration, site investigations and waste disposal and understanding geohazards (e.g. flooding, earthquakes, volcanic eruptions and landslides.In addition, the Programme Specifications were informed by:
 - QAA Frameworks for Higher Education Qualifications in England Wales and Northern Ireland
 - PDR report (November 2013)
 - <u>University Learning Strategy</u>
 - University Employability Strategy
 - NSS
 - First Destination Survey
 - External Examiner's Reports
 - Accreditation by the Geological Society of London <u>http://www.geolsoc.org.uk/en/Education%20and%20Careers/Universities/Degree%20Accreditat</u> <u>ion/First%20Degree%20Programmes%20in%20Geoscience/Currently%20Accredited%20First</u> <u>%20Degree%20Programmes</u>

9. Programme Outcomes:

Intended Learning	Teaching and Learning	How Demonstrated?
Outcomes	Methods	
(a) Disc	ipline specific knowledge and co	mpetencies
(i) N	lastery of an appropriate body of kr	nowledge
Discuss and explain the	Lectures; Tutorials; Practical	Written and practical
general principles and	classes; Seminars; Field Courses;	examinations, including short-
techniques of Geology,	Demonstrations; Example sheets;	answer and essay examinations;
including the structure,	Resource-based learning;	Problem-based examinations;
composition and evolution of	Directed reading; Problem-	Coursework; Module tests;
the Earth and its	solving classes.	Essays; Assessment of field
interrelationships with the		reports and maps; Poster
hydrosphere, cryosphere,		presentations; Field notebooks;
biosphere, and atmosphere		Problem-based exercises, written
and the perturbations of		reports.
these systems by		
extraterrestrial influences.		
Describe the issues		
associated with exploitation		As above
of resources and the	As above	
protection of the		
environment.		

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?	
(ii) Understanding and application of key concepts and techniques			
Describe, identify and interpret a range of geological materials in the laboratory and field; select appropriate techniques to enable this; and explain geological relationships.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Field notebooks.	
Examine, record and interpret the geology (<i>senso</i> <i>lato</i>) of a region via a range of field-based techniques.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Independent field work.	Practical examination; Report and field notebook and map assessment	
Explain geological time, rates and fluxes, and the techniques required to determine them.	Lectures, Tutorials, Practical classes; Seminars; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading; Problem- solving classes.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations.	
Select geological knowledge and data for modeling purposes (for example, for evaluation of scientific hypotheses, for hazard mitigation, or for resource estimation).	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; field notebooks.	
Describe the importance of geological materials as resources, their exploitation and associated environmental impact.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written exam, including short answer questions; group oral presentation.	
Discuss and explain the processes of mineral deposit formation and those processes that disseminate contaminants through the environment.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; field notebooks.	
Demonstrate and apply knowledge of safety procedures in the field.	Field-based practical classes and demonstrations	Completion of risk assessments; Demonstration and role play Application during Field Courses.	

Intended Learning	Teaching and Learning	How Demonstrated?		
Outcomes	Methods			
	(iii) Critical analysis of key issues			
Identify theories paradigms, concepts and principles; apply scientific principles to evaluate current geological paradigms; and evaluate environmental and societal aspects of the Earth's resources.	Lectures; Tutorials; Practical classes; Field Courses; Demonstrations; Example sheets; Resource-based learning; Directed reading.	Written and practical examinations, including short- answer and essay examinations; Problem-based examinations; Coursework; Module tests; Essays; Tutorial discussions; Dissertations.		
(iv)	Clear and concise presentation of r	naterial		
Synthesise and interpret results, in order to effectively communicate (<i>via</i> written, oral, graphical means) data and ideas to a range of audiences.	Tutorials; Group seminars; Practical classes	Essays, essay-based examinations; independent projects; contributions to tutorial discussions; poster displays; reports; group talks.		
(v) Critic	al appraisal of evidence with appro	priate insight		
Debate geological ideas. Construct and test scientific hypotheses and analyse using geological data.	Lectures; Tutorials; Practical classes; Seminars; Field Courses; Demonstrations; Directed reading; Problem-solving classes.	Essays; essay- and practical examinations; reports; presentations; Dissertations.		
(1	vi) Other discipline specific compete	encies		
Conduct a range of field- based studies (e.g. geological mapping, and recording of field observations).	Field courses, practical classes and demonstrations.	Report, field notebook, and geological map. Practical examinations.		
Develop responsibility for the immediate working environment.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.		
Describe risks for hazard assessment for field-based work. Identify safe practice.	Field-based classes and projects.	Staff-monitoring of hazard assessment forms. Assessment of fieldwork.		
Explain the geological structure and history of an area.	Field classes, lectures, practical classes.	Independent field project report.		

Intended Learning Outcomes	Teaching and Learning Methods (b) Transferable skills	How Demonstrated?
	(i) Oral communication	
Present geological data and theories using appropriate methods.	Tutorials; Group seminars/discussions; field-based presentations.	Oral presentations in tutorials and classes.
Discuss and review geological topics in tutorial and other group discussions, and respond effectively to questioning.	Tutorials; Group seminars/discussions; field-based presentations.	Oral presentations in tutorials and classes
	(ii) Written communication	
Communicate effectively and appropriately in a variety of written formats including essays, reports, projects, CVs and posters	Tutorials, demonstrations and guidance notes	Assessed CVs, essays, reports, poster displays, and examinations
Draw and describe geological features, specimens and thin sections.	Practical classes, demonstrations, fieldwork, independent project work	Field notebooks; assessed practical folders; assessed reports.
	(iii) Information technology	
Use spreadsheets or other software to enter, manipulate and display numerical data.	Subject-embedded exercises. Tutorials.	Assessed report; practical assignments.
Use appropriate software packages to prepare written reports, essays, dissertations, posters and presentations (e.g. Word, PowerPoint)	Report-writing for tutorials; subject-embedded exercises; presentation to tutorial groups and classes.	Assessed report; tutorial and practical assignments; independent work assignments.
Critically review information from electronic sources.	Tutorial and class supported information retrieval for projects, essays, reports and dissertations.	Assessed report; tutorial; practical assignments and independent work assignments.

Intended Learning Outcomes	Teaching and Learning Methods	How Demonstrated?		
	(iv) Numeracy			
Select appropriate numerical, statistical and graphical methods to explain and interpret geological concepts.	Introduced in the first year within practical classes and tutorials.	Mid-semester progress tests and as components within subject specific modules throughout the three years of study; feedback on practical class assignments.		
	(v) Team working			
Organize and work effectively within a team, and evaluate performance of self and of team.	Tutorials, seminars, practical classes, project work, and field- based discussions.	Tutorial-based assessments; assessed practical work, team report and team fieldwork.		
Identify self and team goals and responsibilities for team working.	As above.	As above.		
	(vi) Problem solving			
Solve numerical, spatial, temporal and geometrical problems.	Lectures, tutorials, practical and field classes, group work, projects.	Assessment of field notebooks, practical class work, project work and reports.		
Solve problems with incomplete or contradictory information.	As above	As above.		
	(vii) Information handling			
Effectively search for, gather and utilise information relevant to geological problem solving.	Lectures, tutorials, practicals, study skills within tutorials, field and lab-based projects.	Tutorial assignments, project work.		
	(viii) Skills for lifelong learning			
Demonstrate intellectual independence	All of the above, and particularly independent project work.	Assessed independent work. Coursework within modules		
Develop and implement a personal plan of work to meet a deadline.	All of the above, and particularly independent project work.	Assessed independent work.		
Identify targets for personal, career and academic development.	All of the above, and particularly independent project work and in tutorials.	Assessed independent work. Successful Placement for Year in Industry students.		

10. Progression points:

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course.

For Year in Industry Variant:

Progression onto the Year in Industry placement preparation module will require a 1st year CWA of 50%. Students who undertake the placement preparation module, but do not obtain a placement or do not satisfactorily complete (attendance, participation and completion of set tasks) the placement year will be transferred to the standard degree programme.

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in <u>Senate</u> <u>Regulation 5</u>

12. Special features:

Residential field courses Group problem solving Student centered learning – small-group tutorials Field-based project Accessible, extensive mineral, rock and fossils undergraduate teaching collections, including ore deposits Modules incorporating industry-standard software training and application Department-based specialist careers advisors

Placements

Students undertake a year in industry between the second and third years of their programme. Progression onto the Year in Industry placement preparation module will require a 1st year CWA of 50%. Students who undertake the placement preparation module, but do not obtain a placement or do not satisfactorily complete (attendance, participation and completion of set tasks) the placement year will be transferred to the standard degree programme.

As a condition of the 'with Industry' programme, students are required to undertake preparatory training during the second year of their degree.

Students are responsible for securing their own placement but will receive support in this from the Career Development Service.

Once in placement, students will need to register their University 'attendance' by logging on to a dedicated Blackboard site once a week. In the course of the placement the student will receive one or two visits from a member of staff. The second 'visit' can be in the form of a Skype call. Should a student secure an overseas placement both visits will typically be delivered via a Skype call.

While in placement, students will be required to complete an online log. The placement log requires students to undertake reflective activities which are marked on a pass/fail basis. This, together with the final summative reflective report, constitutes the assessment for the placement year. Students have to submit the final report within one month of finishing the placement, and are allowed to resubmit once if required.

If a student fails to secure a placement or does not meet the academic progression requirements at the end of year 2, they will be transferred to the non-industry variant of their degree programme.

13. Indications of programme quality

Accreditation by the Geological Society of London.

The research interests of the staff strongly inform the teaching programme. External industry involvement with the development of parts of the teaching programme, including the integration of relevant software and access to case studies.

Quotes from recent External Examiners:

'The department is excellent and deserves its reputation as one of the leading centres of geoscience teaching/research in Europe.'

'I believe that the BSc and MGeol programmes in Applied and Environmental Geology to be of high quality, delivered by a dedicated set of professional academics. I was impressed by the diverse range of assessment styles and the extremely positive reactions of the students to the course and the staff team.'

'The Applied and Environmental Geology course delivers instruction and assessment across a wide range of subjects which provide a strong background and appropriate expertise for students wishing to achieve employment in Applied Geology.'

14. External examiners

The details of the External Examiner(s) for this programme and the most recent External Examiners' reports can be found <u>here</u>.

Appendix 1: Programme structure (programme regulations)

BSc APPLIED AND ENVIRONMENTAL GEOLOGY

FIRST YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL1100	Tutorials	15
GL1101	The Rock Cycle: our dynamic earth	30
	SEMESTER 1	
GL1102	Micro to Macro	15
GL1103	Palaeobiology and the Stratigraphic	15
	Record	
	SEMESTER 2	
GL1104	Natural Resources and the	15
01104	Environment	15
GL1105	Geological Maps and Structures	15
GL1106	Introductory Field Course	15
SECOND YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL2100	Geological Field Skills	30
010100	SEMESTER 1	45
GL2103	Magmatic and Metamorphic Processes	15
GL2105	Depositional Processes and	15
GLZIOS	Environments	15
GL2106	Introductory Mineral Deposits	15
	SEMESTER 2	
GL2104	Interpreting Geological Maps and	15
	Stratigraphy	
GL2101	Earth and Ocean Systems	15
GL2102	Structure and Tectonics	15
THIRD YEAR MODULES		
Core Modules		Credits
GL3100	SEMESTER 1 Field Based Project	30
GL3102	Environmental Geoscience	15
513102		
	SEMESTER 2	
GL3101	Dissertation	15
GL3109	Mineral Exploration and Evaluation	15
GL3113	Applied Geology Field Course	15
Optional Modules		Credits
(To choose 15 credits)	SEMESTER 1	
GL3103	Petroleum Reservoir Petrophysics	15
GL3104	Concepts in sedimentology and	15
	stratigraphy with applications to	
	reservoir geoscience	
(To chooco 15 gradita)	SEMESTED 2	
(To choose 15 credits)	SEMESTER 2	

GL3110	Advanced Mineral Deposits	15
GL3105	Earth Science in Education	15
GL3106	Planetary Science	15
GL3107	Reflection Seismology	15
GL3108	Geological Application of	15
	Microfossils	
GY3434	Stable Isotopes in the Environment	15

BSc APPLIED AND ENVIRONMENTAL GEOLOGY WITH A YEAR IN INDUSTRY

FIRST YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL1100	Tutorials	15
GL1101	The Rock Cycle: our dynamic earth	30
	SEMESTER 1	
GL1102	Micro to Macro	15
GL1103	Palaeobiology and the Stratigraphic	15
	Record	
	SEMESTER 2	
GL1104	Natural Resources and the	15
014405	Environment	45
GL1105	Geological Maps and Structures	15
GL1106	Introductory Field Course	15
SECOND YEAR MODULES		
Core Modules		Credits
	YEAR LONG	
GL2100	Geological Field Skills	30
	SEMESTER 1	
GL2103	Magmatic and Metamorphic	15
	Processes	
GL2105	Depositional Processes and	15
	Environments	
GL2106	Introductory Mineral Deposits	15
C12104	SEMESTER 2	15
GL2104	Interpreting Geological Maps and Stratigraphy	15
GL2101	Earth and Ocean Systems	15
GL2101 GL2102	Structure and Tectonics	15
612102		
	YEAR LONG	
ADGL2200	Placement Preparation	0
THIRD YEAR MODULES		
Core Modules		Credits
	SEMESTER 1	
GL3100	Field Based Project	30
GL3102	Environmental Geoscience	15
010101	SEMESTER 2	
GL3101	Dissertation	15
GL3109	Mineral Exploration and Evaluation	15
GL3113	Applied Geology Field Course	15

Optional Modules		Credits
(To choose 15 credits)	SEMESTER 1	
GL3103	Petroleum Reservoir Petrophysics	15
GL3104	Concepts in sedimentology and stratigraphy with applications to reservoir geoscience	15
(To choose 15 credits)	SEMESTER 2	
GL3110	Advanced Mineral Deposits	15
GL3105	Earth Science in Education	15
GL3106	Planetary Science	15
GL3107	Reflection Seismology	15
GL3108	Geological Application of Microfossils	15
GY3434	Stable Isotopes in the Environment	15

THIRD YEAR

Students who gain an industry placement will be assessed as per the standard model for undergraduate placements in the College of Science and Engineering. The marks from this year will not be included in the final degree assessment.

Appendix 2: Module specifications

See module specification database http://www2.le.ac.uk/offices/sas2/courses/documentation

Appendix 3: Skills matrix