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Project Summary

Uterine cancer is a major women’s health challenge in the UK, with around 9,800 new cases
annually and approximately 2,600 deaths per year [1]. Beyond overall burden, there is increasing
evidence of clinically meaningful heterogeneity in presentation, outcomes and treatment
response across patient groups, including disparities associated with ethnic background [2]. This
reinforces the need for earlier, more accurate risk stratification and more personalised pathways
of care, and aligns with EPSRC priorities in healthcare technologies that emphasise advanced
modelling, predictive analytics and decision-support systems.

Digital pathology offers a scalable substrate for such innovation, yet current computational
pathology approaches commonly fall into two improvable paradigms. First, high-representation-
capacity computer-vision models often require large cohorts and intensive computing, and may
learn brittle correlates that do not generalise across centres or staining and artefact variation.
Second, classical pipelines that rely on counts and basic morphometrics (e.g., cell size and density)
provide weak representations of tissue organisation and overlook interaction structure within the
tumour microenvironment (TME).

This project proposes an engineering-led alternative: dynamic, multi-scale graph Al in which tissue
is represented as a hierarchical, evolving network of cells and tissue components, explicitly
modelling neighbourhood structure and interaction motifs. Crucially, the learning problem will be
constrained by biophysical priors derived from established multicellular modelling formalisms
(e.g., Cellular Potts and vertex models), which capture how adhesion, packing, mechanical forces
and rearrangements shape tissue architecture. Rather than attempting full mechanistic
simulation, these principles will be translated into learnable constraints (regularisers, invariances
and feasible transition rules) that guide representation learning under limited labels and sparse
temporal sampling.

The resulting representations will enable: (1) interpretable modelling of TME state and
microenvironment evolution across disease stages or longitudinal specimens; (2) spatially
referenced evidence suitable for expert review (regions, cell-type neighbourhoods, interaction
changes); and (3) tighter, lower-noise association discovery with multi-omics biomarkers for
molecular subtyping and prognosis. Where well-curated multi-ethnic cohorts are available, the
same evidence-centric pipeline will support Al-driven hypothesis generation and testing of
whether microenvironmental pathways and tissue-omics links are consistent across groups or
indicate actionable differences. Methodological generality will be prioritised for reuse across
cancer types and institutions.

The project will proceed in three technical routes.
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1. Representation extraction and distillation: pathology foundation models [3] will provide
expertise-rich multi-scale tissue embeddings; knowledge distillation will compress this capability
into efficient graph encoders operating on cell- and region-level tissue graphs. [4]

2. Biophysically constrained dynamics: dynamic graph models (state-space, neural ODE and
temporal-attention variants) will be developed to infer microenvironment trajectories from sparse
time points or stage-ordered cohorts, while explicitly tracing disease-linked microenvironment
evolution pathways on tissue maps (i.e., where and how interaction structure changes as
progression unfolds). Constraints inspired by multicellular biophysics (e.g., packing/adhesion
consistency, mechanically plausible neighbourhood transitions, and ECM-mediated influence
fields) will regularise feasible change.

3. Cross-modal alignment and tasks: multimodal contrastive learning will align graph-derived
microenvironment states with omics profiles to support molecular subtyping, prognostic
stratification and biomarker discovery, returning uncertainty-aware, tissue-grounded explanations
suitable for expert review.

In summary, this PhD project will develop a new generation of dynamic graph Al for
computational pathology, treating histology as an evolving interaction network of cells and tissue
components. The central vision is to reconstruct microenvironment evolution pathways on tissue
maps, showing where, how and why neighbourhood structure changes as disease progresses, and
to align these patterns with multi-omics signals to enable molecular subtyping, prognostic
stratification and biomarker hypothesis generation [5]. The project is intentionally engineering
and Al technical-led: it advances biophysically constrained learning, customisable model
distillation from pathology foundation models, spatial/temporal tissue graph modelling under
weak supervision, and uncertainty-aware, tissue-grounded explanations designed for expert
review. The student will receive rigorous but supportive training in interpretable machine
learning, foundation model developing/application, trustworthy Al, reproducible research
software engineering, and interdisciplinary translation with precision health partners, preparing
them for academic or industrial R&D careers in "Al for science".
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