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Project Summary

Absolute value equations (AVEs) are equations of the form
Ax — |x| = b,

where A is a given square matrix, b is a given vector, and |x| denotes the componentwise absolute
value of the unknown vector x. AVEs arise in several important areas, including the linear
complementarity problem (LCP) [3] and the solution of interval linear systems. The study of AVEs is an
active and rapidly developing area of research with many open problems [2], some of which will be
addressed in this project.

Solving AVEs is challenging because of the non-differentiability of the absolute value function. For
instance, it is well-known that even just deciding whether an AVE is solvable is NP-hard. Moreover,
several natural questions about the structure of the solution set (see Figure 1) are computationally
intractable [1]. For example, in the case of infinitely many solutions, determining whether the solution
set is bounded is NP-hard. Likewise, checking whether the solution set is convex is NP-hard, even when
A has rank one.

Structure of the AVE Solution Set
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Figure 1. A 3D visualisation illustrating three distinct cases. From left to right: a non-convex solution set consisting

of eight isolated points, an unbounded solution set, and a bounded solution set forming a triangle.

A range of algorithms for solving AVEs already exists (e.g., Mangasarian’s generalised Newton method,
Lemke’s LCP-based algorithm, and Rohn’s sign-accord algorithm). However, these methods are not
always efficient and often do not scale to high dimensional problems.
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In this PhD project, we will both address theoretical computational complexity questions and improve
the efficiency of existing algorithms. Specifically, we will:

- develop new necessary and sufficient conditions for non-solvability, solvability and unique
solvability, with particular emphasis on feasible sufficient conditions --- i.e., sufficient
conditions that can be checked with a cubic complexity in the matrix dimension.

- design, implement, test and benchmark new algorithms against current state-of-the-art
methods across a wide range of numerical experiments.

Familiarity with linear algebra and enthusiasm for the subject are essential for the successful
completion of this project. A background in numerical analysis and scientific computing, experience in
high-quality open-source software development, and prior research experience would be desirable.
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