1. **Programme title(s) and UCAS code(s):**

 Natural Sciences (Life and Physical Sciences) BSc FCG0 BSc/NS
 Natural Sciences (Life and Physical Sciences) MSci GFC0 MSci/NS
 Natural Sciences (Life and Physical Sciences) BSc with a Year Abroad*
 Natural Sciences (Life and Physical Sciences) MSci with a Year Abroad*

 *can only be transferred onto when in course

2. **Awarding body or institution:**

 University of Leicester

3. a) **Mode of study:**

 Full time

 b) **Type of study:**

 Campus Based

4. **Registration periods:**

 BSc

 The normal period of registration is three years
 The maximum period of registration is five years

 BSc with Year Abroad:

 The normal period of registration is four years
 The maximum period of registration is six years

 MSci

 The normal period of registration is four years
 The maximum period of registration is six years
MSci with Year Abroad:

The normal period of registration is five years

The maximum period of registration is seven years

5. Typical entry requirements:

EPQ with A-levels: AAB + EPQ at grade B
Access to HE (Science): pass full diploma with a substantial number of credits at distinction in science subjects at Level 3.
European Baccalaureate: pass with 85% overall. At least one science must be offered.
International Baccalaureate: pass diploma with 36 points, including at least one Higher Level science at Level 5.
Other Qualifications: BTEC nationals, international, Irish Scottish, OU, and other qualifications welcomed (when accompanied by satisfactory English Language proficiency for international students).
Pass in the UoL STEM, Biological Sciences or Medicine Foundation Year
If no post-16 Maths qualification is held, students will be offered a pre-sessional Maths course.

For the aims, learning outcomes and application criteria for the GCSA Year Abroad please see https://le.ac.uk/study/undergraduates/courses/abroad

6. Accreditation of Prior Learning:

APL will not be accepted for exemptions from individual modules, however may be considered for direct entry to year 2, on a case by case basis and subject to the general provisions of the University APL policy.

7. Programme aims:

The programme aims to

For the BSc: To provide students with

- An applied understanding of the scientific method and its limits
- Laboratory experience and a basic aptitude in physical, chemical and biological laboratories
- A sound basic knowledge of IT and computing
- Competency in basic mathematics (numeracy, algebra, graphical analysis, elements of calculus, the use and abuse of statistics)
- High level professional and personal skills (presentation, written and oral communication, team work, time management)
- Detailed knowledge of one of the following sciences: physics, chemistry, or biology,
• experience in the public understanding of science and the effects of science on society
• ability to critically evaluate scientific publications
• experience of aspects of current research in interdisciplinary areas of science
• independent learning skills

in addition, for the MSci

• ability to undertake extended research in interdisciplinary areas of science
• advanced knowledge of one of the following sciences: physics, chemistry, or biology,

8. **Reference points used to inform the programme specification:**

• Discovery-Led and Discovery-Enabling Learning Strategy 2016-2020
• University of Leicester Periodic Developmental Review Report
• External Examiners’ reports (annual)
• Draft Natural Sciences Society Accreditation Criteria

9. **Programme Outcomes:**

<table>
<thead>
<tr>
<th>Intended Learning</th>
<th>Teaching and Learning</th>
<th>How Demonstrated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Discipline specific knowledge and competencies</td>
<td>(i) Mastery of an appropriate body of knowledge</td>
<td></td>
</tr>
<tr>
<td>Recall of core information, model problems, experiments and techniques.</td>
<td>Lectures, Specified Reading, Problem-based workshops</td>
<td>Written examinations</td>
</tr>
<tr>
<td>Awareness of current issues in Science</td>
<td>Independent group discussion, Tutorials</td>
<td>Reports and presentations</td>
</tr>
<tr>
<td>And for the MSci: Application of advanced-level discipline specific knowledge</td>
<td>Lectures, guided independent study</td>
<td>Short answer question sets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Written examinations, Reports</td>
</tr>
<tr>
<td>Intended Learning</td>
<td>Teaching and Learning</td>
<td>How Demonstrated?</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(ii) Understanding and application of key concepts and techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of basic concepts. Practical demonstration of experimental method and</td>
<td>Lectures, Tutorials, Laboratory supervision, PBL Workshops, Extended research project,</td>
<td>Written examination, Presentations,</td>
</tr>
<tr>
<td>design.</td>
<td>Seminars, guided independent study</td>
<td>Reports</td>
</tr>
<tr>
<td>Use of IT.</td>
<td></td>
<td>Laboratory competency checklist</td>
</tr>
<tr>
<td>Competent use of standard laboratory equipment, knowledge of safety procedures, and</td>
<td></td>
<td>Short answer question sets</td>
</tr>
<tr>
<td>applications.</td>
<td></td>
<td>Project dissertation</td>
</tr>
<tr>
<td>Professional skills.</td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>And for the MSci: Application of Agent-based modelling to complex systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) Critical analysis of key</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical appraisal of scientific literature</td>
<td>Laboratory supervision, Group problems, Journal club, Research project</td>
<td>Written examinations, Journal Club,</td>
</tr>
<tr>
<td>Experimental design</td>
<td></td>
<td>Peer review element in Undergraduate</td>
</tr>
<tr>
<td>And for the MSci: Research design</td>
<td></td>
<td>Research journal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project progress summary and report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) Clear and concise presentation of material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation of scientific results Participation in scientific discussion</td>
<td>PBL Workshops, Tutorials, PT meetings, Research lectures</td>
<td>Presentations, Journal Club, Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>seminars, Project Vivas</td>
</tr>
<tr>
<td>(v) Critical appraisal of evidence with appropriate insight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical appraisal of scientific literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>And for the MSci: Research design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory supervision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal club</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written examinations,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Club, Peer review element in Undergraduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project progress summary and report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(vi) Other discipline specific competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical demonstration of experimental method.</td>
</tr>
<tr>
<td>Use of standard equipment, knowledge of safety procedures, and applications. Professional skills.</td>
</tr>
<tr>
<td>Laboratory classes, Problem BL, Workshops, Peer review</td>
</tr>
<tr>
<td>Group coursework</td>
</tr>
<tr>
<td>Laboratory competency checklist,</td>
</tr>
<tr>
<td>Written examinations,</td>
</tr>
<tr>
<td>Assessed problems</td>
</tr>
</tbody>
</table>

| (b) Transferable skills |

<table>
<thead>
<tr>
<th>(i) Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to questioning</td>
</tr>
<tr>
<td>Science presentations</td>
</tr>
<tr>
<td>And for the MSci: Defence of research approach</td>
</tr>
<tr>
<td>Tutorials</td>
</tr>
<tr>
<td>Group working observation</td>
</tr>
<tr>
<td>Project seminars</td>
</tr>
<tr>
<td>Workshops</td>
</tr>
<tr>
<td>Journal club</td>
</tr>
<tr>
<td>Presentation assessment</td>
</tr>
<tr>
<td>Assessment of responses to questions</td>
</tr>
<tr>
<td>Project Viva</td>
</tr>
<tr>
<td>Project Viva</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ii) Written</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to compile an appropriate CV</td>
</tr>
<tr>
<td>Ability to communicate scientific concepts with clarity</td>
</tr>
<tr>
<td>And for the MSci: Ability to communicate a significant body of research clearly and concisely</td>
</tr>
<tr>
<td>CV Support Session</td>
</tr>
<tr>
<td>Skill workshops</td>
</tr>
<tr>
<td>Tutorials</td>
</tr>
<tr>
<td>Research project</td>
</tr>
<tr>
<td>Formative feedback on CV from PT</td>
</tr>
<tr>
<td>Research lecture reports</td>
</tr>
<tr>
<td>Assessed reports</td>
</tr>
<tr>
<td>Project dissertations</td>
</tr>
<tr>
<td>Project progress summary and report</td>
</tr>
<tr>
<td>(iii) Information</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Use of standard IT packages</td>
</tr>
<tr>
<td>Use of R and Python to: perform basic data analysis; produce plots; produce scripts to perform a sequence of commands.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
10. **Progression points:**

In cases where a student has failed to meet a requirement to progress he or she will be required to withdraw from the course.

Progression to a discipline specialism will require a pass (over 40%) in significant assessment elements (e.g. sections of examination, end of module coursework) associated with that discipline.

The following additional progression requirements are requested for MSci and BSc year abroad routes, respectively (however, it should be noted that the progression criteria to integrated Master programmes are currently being considered as part of the review of Senate regulation 5; the expectation is the programme will adopt the standard regulations once they are approved).

MSci students may not take any module assessments at attempt three; if MSci fail any credits at attempt 2 they will be transferred to the BSc (reg. 5.15)

MSci progression criteria are as follows:

Year Two CWA

- 60%+ automatic
- 55-60% at Teaching Committee discretion following interview and recommendation by Personal Tutor

Year Three CWA

- 55%

The following progression criteria apply to BSc year abroad:
Year Two CWA

60%+ automatic

55-60% at Teaching Committee discretion following interview and recommendation by Personal Tutor

11. Scheme of Assessment

The programme follows the standard scheme of award and classification set out in the Senate Regulations 5.

12. Special features:

Interdisciplinary modules, ability to specialise in a chosen subject area at end of year one, authentic assessment, embedded skill development, group problem solving, research/ problem-based learning, science communication, Journal of Interdisciplinary Science Topics, opportunity for exchange with comparable programme at McMaster University.

13. Indications of programme quality

- The programme will be subject to standard University of Leicester procedures for quality assessment, including Annual Developmental Review, Periodic Developmental Review, Quality Office review, liaison with College Academic Committee, and the programme will report to the department’s Learning and Teaching Committee (L&T).
- An External Examiner will be appointed according to Senate regulations 7.18-7.60.
- There will be systematic, regular evaluation by students registered with the programme, including anonymous evaluation of sessions and modules. A student representative will be invited to attend L&T committee meetings (for unreserved business only).
- The programme’s teaching staff will engage with University procedures for peer assessment of teaching and marking.

It should be noted that no competitor programmes are currently accredited, however, the UK Natural Sciences Network/Society is soon to launch a UK Natural Sciences Accreditation Scheme in conjunction with Science Council. The proposer of the Natural Sciences (Life and Physical Sciences) attended the 2016/7 meetings of the Network at which the scheme was discussed. It is expected that the new programme will meet all the criteria for Natural Sciences Accreditation.

14. External Examiner(s) reports

n/a
Students will study a core Natural Sciences first year of problem-based interdisciplinary modules and skills modules. In their second year students will be able to select a specialisation route in either Molecular and Cellular Biology, Organismal Biology, Physics or Chemistry, studying 60 credits from their desired discipline in years 2 and 3 and focusing on this area in their final year project. Alongside this they will continue to study interdisciplinary NS modules which expose them to areas where their chosen research discipline interfaces with the other sciences. Students that are registered for an MSci will study their first three years as described above with an additional fourth year consisting of a 60 credit project in their chosen specialism, a 15 credit Natural Sciences core taught module and 45 credits of taught modules from their chosen specialism.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Biological science-focussed interdisciplinary modules (120 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
<td>Modules from specialisms 60 credits</td>
</tr>
<tr>
<td></td>
<td>Biological science-focussed interdisciplinary modules (60 credits)</td>
</tr>
<tr>
<td>Year 3</td>
<td>Modules from specialisms 60 credits</td>
</tr>
<tr>
<td></td>
<td>Biological science-focussed interdisciplinary modules (30 credits)</td>
</tr>
<tr>
<td></td>
<td>Project associated with specialism (30 credits)</td>
</tr>
<tr>
<td>Year 4</td>
<td>Interdisciplinary modelling module (15 credits)</td>
</tr>
<tr>
<td></td>
<td>Modules from specialisms (45 credits)</td>
</tr>
<tr>
<td></td>
<td>Project associated with specialism (60 credits)</td>
</tr>
</tbody>
</table>
BSc NATURAL SCIENCES (LIFE AND PHYSICAL SCIENCES)

FIRST YEAR MODULES

Core Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>YEAR LONG</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1005</td>
<td>LABORATORY, COMPUTING AND SCIENTIFIC SKILLS I</td>
<td>30</td>
</tr>
<tr>
<td>NT1006</td>
<td>MATHEMATICS FOR SCIENCE</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1008</td>
<td>30</td>
</tr>
</tbody>
</table>

SEMESTER 1

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1008 PRINCIPLES OF SCIENCE: BONDS MOLECULES AND CELLS</td>
<td>30</td>
</tr>
</tbody>
</table>

N.B. The majority of teaching for NT1005 takes place in semester 1.

SEMESTER 2

Core Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1003 NETWORKS AND CIRCUITS</td>
<td>15</td>
</tr>
<tr>
<td>NT1004 BIOPHYSICS, PHYSIOLOGY AND METABOLISM</td>
<td>15</td>
</tr>
<tr>
<td>NT1007 SCIENCE, SOCIETY AND SUSTAINABILITY</td>
<td>15</td>
</tr>
</tbody>
</table>

SECOND YEAR MODULES

SEMESTER 1

Core Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2001 ASTROPHYSICS, ASTROCHEMISTRY AND ASTROBIOLOGY</td>
<td>15</td>
</tr>
<tr>
<td>NT2003 LABORATORY, MATHEMATICAL AND SCIENTIFIC SKILLS II</td>
<td>15</td>
</tr>
</tbody>
</table>

(Part 1)

| MODULES FROM SPECIALISMS (see table below) | 30 |

<p>| Semester Total | 60 |</p>
<table>
<thead>
<tr>
<th>SEMESTER 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td>Credits</td>
</tr>
<tr>
<td>NT2002</td>
<td>EVOLUTION</td>
</tr>
<tr>
<td>NT2003</td>
<td>LABORATORY, MATHEMATICAL AND SCIENTIFIC SKILLS II (Part 2)</td>
</tr>
<tr>
<td></td>
<td>MODULES FROM SPECIALISMS (see table below)</td>
</tr>
<tr>
<td>Semester Total</td>
<td>60</td>
</tr>
</tbody>
</table>

MODULAR FROM SPECIALISMS				
MODULE	**SPECIALISM**	**SEMESTER/YEAR**	**CREDITS**	
NT2004	MOLECULAR AND CELLULAR BIOLOGY	THE MOLECULES OF LIFE – AN INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY	SEMESTER 1	30
NT2005	MOLECULAR AND CELLULAR BIOLOGY	PHYSIOLOGY, PHARMACOLOGY AND NEUROSCIENCE	SEMESTER 2	30
NT2004	ECOLOGICAL AND ZOOLOGICAL SCIENCE	THE MOLECULES OF LIFE – AN INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY	SEMESTER 1	30
NT2006	ECOLOGICAL AND ZOOLOGICAL SCIENCE	GENETICS, BIODIVERSITY AND BEHAVIOUR	SEMESTER 2	30
NT2007	CHEMISTRY	INTRODUCTORY ANALYTICAL AND PHYSICAL CHEMISTRY	YEAR LONG	30
NT2008	CHEMISTRY	INTRODUCTORY ORGANIC AND INORGANIC CHEMISTRY	YEAR LONG	30
NT2009	PHYSICS	MECHANICS, ELECTRICITY AND MAGNETISM	SEMESTER 1	30
NT2010	PHYSICS	LIGHT AND MATTER, WAVES AND QUANTA	SEMESTER 2	30
THIRD YEAR MODULES

Core Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>YEAR LONG</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3001</td>
<td>RESEARCH PROJECT III</td>
<td>30</td>
</tr>
<tr>
<td>NT3003</td>
<td>INTERDISCIPLINARY RESEARCH JOURNAL</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MODULES FROM SPECIALISMS (see table below)</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modules</th>
<th>SEMESTER 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3002</td>
<td>MOLECULAR ANALYSIS AND DESIGN</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE</th>
<th>SPECIALISM</th>
<th>SEMESTER/YEAR LONG</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3004</td>
<td>MOLECULAR AND CELLULAR BIOLOGY</td>
<td>SEMESTER 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MOLECULAR CELL BIOLOGY AND GENOMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3005</td>
<td>MOLECULAR AND CELLULAR BIOLOGY</td>
<td>SEMESTER 2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>BIOINFORMATICS AND BIOCHEMISTRY OF NUCLEIC ACIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3006</td>
<td>ECOLOGICAL AND ZOOLOGICAL SCIENCE</td>
<td>SEMESTER 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>GENOMES, GLOBAL CHANGE AND CONSERVATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3007</td>
<td>ECOLOGICAL AND ZOOLOGICAL SCIENCE</td>
<td>SEMESTER 2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>NEUROBIOLOGY, ANIMAL BEHAVIOUR AND EVOLUTION IN THE FIELD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3008</td>
<td>CHEMISTRY</td>
<td>YEAR LONG</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>SPECTROSCOPY AND PHYSICAL CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3009</td>
<td>CHEMISTRY</td>
<td>YEAR LONG</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>ORGANIC AND INORGANIC CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3010</td>
<td>PHYSICS</td>
<td>SEMESTER 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>ELECTROMAGNETIC FIELDS AND RELATIVITY, QUANTUM PHYSICS AND PARTICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT3011</td>
<td>PHYSICS</td>
<td>SEMESTER 2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CONDENSED MATTER AND STATISTICAL PHYSICS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BSc NATURAL SCIENCES (LIFE AND PHYSICAL SCIENCES) WITH A YEAR ABROAD

FIRST AND SECOND YEAR MODULES
As for the BSc in Natural Sciences

THIRD YEAR MODULES
The third year of this programme will be spent studying abroad in an institution on a pre-agreed study abroad programme.
Students will be required to achieve a pass mark in modules taken but these will not contribute to the overall degree classification.

FOURTH YEAR MODULES
As for Year 3 BSc Natural Sciences

MSci NATURAL SCIENCES (LIFE AND PHYSICAL SCIENCES) WITH A YEAR ABROAD

FIRST AND SECOND YEAR MODULES
As for the MSci in Natural Sciences

THIRD YEAR MODULES
The third year of this programme will be spent studying abroad in an institution on a pre-agreed study abroad programme.
Students will be required to achieve a pass mark in modules taken but these will not contribute to the overall degree classification.

FOURTH YEAR MODULES
As for Year 3 MSci Natural Sciences.

FIFTH YEAR MODULES
As for Year 4 MSci Natural Sciences.

OR

FIRST AND SECOND AND THIRD YEAR MODULES
As for the MSci in Natural Sciences

FOURTH YEAR MODULES
The fourth year of this programme will be spent studying abroad in an institution on a pre-agreed study abroad programme.
Students will be required to achieve a pass mark in modules taken but these will not contribute to the overall degree classification.

FIFTH YEAR MODULES
As for Year 4 MSci Natural Sciences.
BSc NATURAL SCIENCES (LIFE & PHYSICAL SCIENCES) WITH A YEAR IN INDUSTRY

FIRST YEAR MODULES
As for the BSc in Natural Sciences

SECOND YEAR MODULES
As for the BSc in Natural Sciences plus non-credit bearing modules Placement Preparation 1 and 2

Core Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT221</td>
<td>Placement Preparation 1</td>
<td>0</td>
</tr>
</tbody>
</table>

SEMESTER 2

Core Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT222</td>
<td>Placement Preparation 2</td>
<td>0</td>
</tr>
</tbody>
</table>

THIRD YEAR MODULES

Year in Industry
The third year of this programme will require students to pass the On Placement Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT223</td>
<td>On Placement</td>
<td>0</td>
</tr>
</tbody>
</table>

FOURTH YEAR MODULES

As for Year 3 MSci Natural Sciences.

FIFTH YEAR MODULES

As for Year 4 MSci Natural Sciences.

OR

FIRST YEAR MODULES AND SECOND YEAR MODULES
As for the MSci in Natural Sciences

THIRD YEAR MODULES

As for Year 3 MSci Natural Sciences plus non-credit bearing modules Placement Preparation 1 and 2

Core Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT221</td>
<td>Placement Preparation 1</td>
<td>0</td>
</tr>
</tbody>
</table>

SEMESTER 2

Core Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT222</td>
<td>Placement Preparation 2</td>
<td>0</td>
</tr>
</tbody>
</table>

FOURTH YEAR MODULES

Year in Industry
The fourth year of this programme will require students to pass the On Placement Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNT223</td>
<td>On Placement</td>
<td>0</td>
</tr>
</tbody>
</table>

FIFTH YEAR MODULES

As for Year 4 MSci Natural Sciences.
MSci NATURAL SCIENCES (LIFE AND PHYSICAL SCIENCES)

FIRST, SECOND AND THIRD YEAR MODULES
As for the BSc in Natural Sciences

FOURTH YEAR MODULES

Core Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>YEAR LONG</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT4001</td>
<td>RESEARCH PROJECT IV</td>
<td>60</td>
</tr>
<tr>
<td>NT4002</td>
<td>MODELLING OF COMPLEX SYSTEMS</td>
<td>15</td>
</tr>
<tr>
<td>MODULAR FROM SPECIALISMS (see table below)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE</th>
<th>SPECIALISM</th>
<th>SEMESTER/YEAR LONG</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT4003</td>
<td>MOLECULAR AND CELLULAR BIOLOGY</td>
<td>SEMESTER 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>GENETICS: EVOLUTION AND GENE EXPRESSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4004</td>
<td>MOLECULAR AND CELLULAR BIOLOGY</td>
<td>SEMESTER 2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CANCER CELL AND MOLECULAR BIOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4005</td>
<td>ECOLOGICAL AND ZOOLOGICAL SCIENCE</td>
<td>SEMESTER 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>EVOLUTIONARY GENETICS AND NEUROBIOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4006</td>
<td>ECOLOGICAL AND ZOOLOGICAL SCIENCE</td>
<td>SEMESTER 2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MOLECULAR ECOLOGY AND EVOLUTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4007</td>
<td>CHEMISTRY</td>
<td>Semester 1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>ADVANCED ORGANIC AND INORGANIC CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4008</td>
<td>CHEMISTRY</td>
<td>Semester 2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ADVANCED PHYSICAL CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4009</td>
<td>PHYSICS</td>
<td>YEAR LONG</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>QUANTUM MECHANICS AND RADIATION AND MATTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT4010</td>
<td>PHYSICS</td>
<td>SEMESTER 1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>PHYSICS SKILLS ELECTIVE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2: Module specifications
See attached documents

Appendix 3: Skills matrix
See attached document