1. **Programme title(s) and code(s):**
 a) BSc Clinical Sciences
 b) HEDip Clinical Sciences*
 c) HECert Clinical Sciences*

 * These awards are only available as exit awards and are not available for students to register onto.

 d) **HECOS Code**

<table>
<thead>
<tr>
<th>HECOS CODE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100270 Medical sciences</td>
<td>100</td>
</tr>
</tbody>
</table>

 e) **UCAS Code (where required)**

 B990

2. **Awarding body or institution:**
 University of Leicester

3. a) **Mode of study:**
 Full-time

 b) **Type of study:**
 Campus-Based

4. **Registration periods:**
 The normal period of registration is three years
 The maximum period of registration is five years

5. **Typical entry requirements:**
 - A-levels: typical offer AAB, including at least two relevant science subjects from Biology (preferred), Chemistry, Physics or Maths.

 - EPQ with A-levels: typical offer ABB + EPQ at grade B. A-level subjects to include two relevant science subjects from Biology (preferred), Chemistry, Physics or Maths. General Studies not accepted.

 - GCSE: At least Grade C/6 in both English Language and Maths (if not held at A-level)

 - Access to HE Diploma: Pass relevant diploma with 45 credits at level three, with distinctions in some subjects. International Baccalaureate: Pass Diploma with 32/30 points, including at least two relevant science subjects at Grade 6 at higher level.

 - BTEC Nationals: Pass relevant Diploma with DDD plus five GCSEs at B or above including two relevant sciences.
Undergraduate Programme Specification

6. Accreditation of Prior Learning:
Not applicable/available for this Programme.

7. Programme aims:
The programme aims to provide students with the opportunity to study the basic medical and biomedical sciences alongside gaining a foundation in traditional laboratory and research skills. In addition to generic transferrable skills, and a strong foundation in the basic medical sciences, students will also complete foundation laboratory and research skills in the context of biological sciences and develop these in year 3 by the completion of an analytical research project. In this way, the degree will prepare students for research careers (including accessing higher degrees) which are particularly aligned with the growing medical and healthcare research sectors. The degree would also prepare students for a Graduate Entry Medical (GEM) Programme and also other professional training routes such as Physicians Assistants which are slowly growing within the UK. The degree may allow students an alternative route into undergraduate medical training through a competitive process.

8. Reference points used to inform the programme specification:
- Framework for Higher Education Qualifications (FHEQ)
- UK Quality Code for Higher Education
- University Learning Strategy
- University Assessment Strategy
- University of Leicester Periodic Developmental Review Report
- External Examiners’ reports (annual)
- United Nations Education for Sustainable Development Goals
- Student Destinations Data

9. Programme Outcomes:

<table>
<thead>
<tr>
<th>Intended Learning Outcomes</th>
<th>Teaching and Learning Methods</th>
<th>How Demonstrated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Discipline specific knowledge and competencies</td>
<td>Lectures, group work, tutorials, seminars, practical classes including anatomic dissection, computer classes, discussions, research projects, directed reading, resource-based learning, and private study.</td>
<td>Examination (to include, but not restricted to, synoptic integrated examination) and coursework (e.g. practical reports, written reports, data analysis, oral presentations, group reports, video production, poster production, dissertation).</td>
</tr>
<tr>
<td>(i) Mastery of an appropriate body of knowledge</td>
<td>Demonstrate an awareness of the main principles of the central basic medical sciences (to include core anatomy, embryology, physiology, biochemistry, pathology, histology, biochemistry, immunology, microbiology, pharmacology, sociology and psychology), biological sciences and related disciplines and explain their core concepts.</td>
<td></td>
</tr>
<tr>
<td>Intended Learning Outcomes</td>
<td>Teaching and Learning Methods</td>
<td>How Demonstrated?</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(ii) Understanding and application of key concepts and techniques</td>
<td>Describe and apply safely appropriate experimental procedures in biological sciences, biomedical sciences and related disciplines.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td></td>
<td>Apply a scientific approach to the solution of problems in the context of the medical and biological sciences and appreciate the rationale of experimental design.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explain related core concepts.</td>
<td></td>
</tr>
<tr>
<td>(iii) Critical analysis of key issues</td>
<td>Demonstrate a capacity for critical scientific analysis of issues in the context of the basic medical sciences, biological sciences, and related disciplines.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(iv) Clear and concise presentation of material</td>
<td>Communicate orally and in writing concepts and arguments in basic medical sciences, biological sciences, and related disciplines.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(v) Critical appraisal of evidence with appropriate insight</td>
<td>Demonstrate the capacity to analyse and criticise evidence from both experimental procedures and the literature.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(vi) Other discipline specific competencies</td>
<td>Demonstrate the ability to assimilate, integrate and apply knowledge and skills from the various medical and biomedical sciences to aid in solving clinical and scientific problems.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(b) Transferable skills</td>
<td>Communicate orally, with clarity and coherence, concepts and arguments in basic medical sciences, biological sciences, and related disciplines.</td>
<td></td>
</tr>
<tr>
<td>(i) Oral communication</td>
<td>Tutorials, seminars, practical classes, computer classes, discussions, fieldwork, research projects, group work.</td>
<td>Oral presentations, group reports, tutorials, practical examinations.</td>
</tr>
<tr>
<td>Intended Learning Outcomes</td>
<td>Teaching and Learning Methods</td>
<td>How Demonstrated?</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(ii) Written communication</td>
<td>Communicate in writing, with clarity and coherence, concepts and arguments in basic medical sciences, biological sciences, and related disciplines.</td>
<td>Tutorials, seminars, practical classes, computer classes, discussions, fieldwork, research projects, group work.</td>
</tr>
<tr>
<td>(iii) Information technology</td>
<td>Demonstrate the effective use of IT for accessing databases and scientific literature; manipulating, processing and presenting data; presenting written assignments.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(iv) Numeracy</td>
<td>Understand and manipulate numerical data, solve problems using a variety of methods and apply numerical and statistical techniques to data analysis.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(v) Team working</td>
<td>Demonstrate the ability to work as part of a group.</td>
<td>Tutorials, group work, research projects.</td>
</tr>
<tr>
<td>(vi) Problem solving</td>
<td>Apply a scientific approach to the solution of problems in the context of the medical and biomedical sciences and appreciate the rationale of experimental design. Demonstrate the ability to assimilate, integrate and apply knowledge and skills from the various medical and biomedical sciences to aid in solving clinical and scientific problems.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(vii) Information handling</td>
<td>Demonstrate the capacity to access a variety of resource materials and to analyse evidence from both experimental procedures and the literature.</td>
<td>Examination and coursework.</td>
</tr>
<tr>
<td>(viii) Skills for lifelong learning</td>
<td>Demonstrate the acquisition of the skills and attributes necessary for lifelong learning, including: intellectual independence, effective time management, the ability to work as part of a team, the use of IT and the capacity to access and utilise a variety of resource materials.</td>
<td>Examination, coursework, personal development planning.</td>
</tr>
</tbody>
</table>
Undergraduate Programme Specification

10. Progression points:
This programme follows the standard Scheme of Progression set out in Senate Regulation 5 governing undergraduate programmes.

The following additional progression requirements for this programme have been approved:

- See under section 12, special features, “Transfer opportunity to MBChB Year 2”

In cases where a student has failed to meet a requirement to progress, he or she will be required to withdraw from the course.

11. Scheme of Assessment

This programme follows the standard Scheme of Award and Classification set out in Senate Regulation 5 governing undergraduate programmes.

The following additional award requirements for this programme have been approved:

- See under section 12, special features, “Transfer opportunity to MBChB Year 2”

12. Special features:

Transfer opportunity to MBChB Year 2

The structure of the Programme and its assessment allows for the special feature of giving students the opportunity of transferring from the BSc Clinical Sciences (after successful completion of year 1) onto year 2 of the MBChB (A100) degree programme, on the proviso that year 2 of the MBChB programme has available spaces.

The performance of students in year 1 of the BSc Clinical Sciences wishing to be considered for transfer to year 2 of the MBChB will be benchmarked against the performance of the cohort into which they expect to join. Therefore, in order to be considered for transfer to MBChB year 2, students must achieve a score in the overall assessment of year 1 equal to the score required to warrant award of Merit or Distinction (decile 2 or 1) in the year 1 MBChB of that year.

In addition, students must successfully complete the other components of the entry requirements to the MBChB (A100) course as this is a regulatory requirement of the General Medical Council i.e. the student must present a valid UCAT score and undertake a Multiple Mini Interview as well as satisfactory health and DBS clearances.

13. Indications of programme quality

- External examiner evaluations

14. External Examiner(s) reports

- To be included following receipt of first report.
Appendix 1: Level 4, 5 and 6 Programme Structure (programme regulations)

BSc Clinical Sciences

Year 1*
All modules are core.

Semester 1
BS1081 Molecular and Cellular Sciences (30)
BS1082 Applied Medical and Biological Sciences 1 (30)

Semester 2
BS1083 Body Systems 1 (30)
BS1084 Applied Medical and Biological Sciences 2 (30)

*The Leicester Award is embedded within the Health Enhancement Programme (HEP) that students will complete during Year 1

Year 2
All modules are core.

Semester 1
BS2081 Body Systems 2 (30)
BS2082 Body Systems and Applied Medical and Biological Sciences 3 (30)*

Semester 2
BS2083 Body Systems 4 (30)
BS2084 Applied Medical and Biological Sciences 4 (30)

*This module contains the Leicester Award Gold

Year 3
All modules are core.

Semester 1
BS3081 Public Health (30)
BS3082 Cardiovascular and Renal Precision Medicine (30)

Semester 2
BS3083 Respiratory and Cancer Precision Medicine (30)
BS3084 Analytical Research Project and Dissertation (30)