Pathway Specification (Undergraduate)
Created: 17.09.2015. Last amended: 28/03/2019
For students entering in 2018/19

1. Pathway Title(s) and UCAS code(s):
 Major in Mathematics; UCAS code – G111

2. Awarding body or institution:
 University of Leicester

3. a) Mode of study
 Full-time

 b) Type of study
 Campus-based

4. Registration periods:
 The normal period of registration is three years
 The maximum period of registration is five years

5. Typical entry requirements:
 AAB at A level with A in Mathematics

6. Accreditation of Prior Learning:
 No APL accepted

7. Programme aims:

 The Major in Mathematics aims to
 • foster confidence, convey knowledge and develop expertise in mathematics, including an appreciation of the usefulness of mathematics;
 • provide an education and training in mathematics which includes fundamental concepts and gives an indication of the breadth of mathematics;
 • develop an appreciation of the necessity for rigorous justification of assertions and the need for logical arguments;
 • develop the ability to model the world using mathematics, and to be able to produce relevant and robust solutions to real world problems;
 • enable students to develop self-confidence gained through the provision of careful guidance in the first level, with increasing independence later;
 • improve students’ team working skills;
 • stimulate intellectual development and develop powers of critical analysis, problem solving, written communication skills and improve presentational skills;
 • develop the ability to communicate solutions to problems and mathematical concepts in general using language appropriate to the target audience;
 • develop competence in IT, in particular the use of mathematical related programmes;
 • enhance practical computing skills by learning software in common use;

8. Reference points used to inform the programme specification:
 • QAA subject review [www.qaa.org/],
 • Quinquennial Review [www.le.ac.uk/].
9. Programme Outcomes:

<table>
<thead>
<tr>
<th>Major in Mathematics</th>
<th>Intended Learning Outcomes</th>
<th>Teaching and Learning Methods</th>
<th>How Demonstrated?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) Discipline specific knowledge and competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge of basic theory, basic techniques of analysis, algebra, applied mathematics, and statistics.</td>
<td>Lectures, specified reading, problem classes, surgeries, poster presentations. In addition, elements of e-Learning are incorporated.</td>
<td>Written examinations, assessed written and computational problems. Assessed oral and poster presentations.</td>
</tr>
<tr>
<td></td>
<td>Ability to recognise sound arguments and valid proofs.</td>
<td></td>
<td>Assessed written projects and problem sheets and seminar discussions.</td>
</tr>
<tr>
<td></td>
<td>Knowledge of basic techniques, and model problems.</td>
<td>Computer practical classes.</td>
<td>Assessed practical classes.</td>
</tr>
<tr>
<td></td>
<td>Knowledge of a computing language and software.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novel applications of basic knowledge. Exposition of logical structure. Ability to generalise and specialise.</td>
<td>Lectures, tutorials, problem classes, marked assignments.</td>
<td>Written examination, assessed problems, project report.</td>
</tr>
<tr>
<td></td>
<td>Proof techniques. Ability to apply an algorithm for the solution of a standard problem.</td>
<td>Lectures, tutorials, problem classes, marked assignments.</td>
<td>Written examinations, assessed problems.</td>
</tr>
<tr>
<td></td>
<td>(iii) Critical analysis of key issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iv) Clear and concise presentation of material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major in Mathematics</td>
<td>Intended Learning Outcomes</td>
<td>Teaching and Learning Methods</td>
<td>How Demonstrated?</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Presentation of results (both informal and to a variety of audiences), participation in scientific discussion. Ability to write coherent reports. Software presentation.</td>
<td>Tutorials, Group workshops, Presentation workshops, project supervision. Feedback on assessed written pieces. Guidance from project supervisor.</td>
<td>Group presentations. Project presentations. Assessed essays. Project presentation.</td>
</tr>
<tr>
<td>(v) Critical appraisal of evidence with appropriate insight</td>
<td>Project design.</td>
<td>Project supervision</td>
<td>Project reports.</td>
</tr>
<tr>
<td>(vi) Other discipline specific competencies</td>
<td>Knowledge of mathematical software such as MATLAB and MAPLE. Mathematical modelling skills. Language of finance.</td>
<td>Lab classes, and purpose designed handbooks. Group projects. Project and lectures, eLearning.</td>
<td>Assessed problems, projects Project reports. Written examinations and presentations.</td>
</tr>
<tr>
<td>(b) Transferable skills</td>
<td>Present technical information in an appropriate form, and deliver presentations to non-mathematical audiences Respond to questions on presentations Project and poster presentation</td>
<td>Tutorials, workshops. Project supervision, presentation workshops.</td>
<td>Presentation assessment.</td>
</tr>
<tr>
<td>(iv) Numeracy</td>
<td>Analysis, breakdown, synthesis, critical examination. Mathematical modelling skills.</td>
<td>Lectures, problem workshops, group work, projects.</td>
<td>Marked problems, group work assessment, project assessment</td>
</tr>
<tr>
<td>(v) Team working</td>
<td>Conduct background research and literature surveys. Summarise content from information sources. Ability to learn from e-learning resources.</td>
<td>Project supervision. Blackboard stored e-learning resources.</td>
<td>Individual and group project reports. Some assessed material only provided through e-learning resources.</td>
</tr>
</tbody>
</table>
Major in Mathematics

<table>
<thead>
<tr>
<th>Intended Learning Outcomes</th>
<th>Teaching and Learning Methods</th>
<th>How Demonstrated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(viii) Skills for lifelong learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independence and time management.</td>
<td>Structured support decreasing through years.</td>
<td></td>
</tr>
<tr>
<td>Careers and business awareness.</td>
<td>Guest speakers.</td>
<td></td>
</tr>
</tbody>
</table>

10. Excluded combinations and course transfers
 a) Excluded combinations
 Any other variance of Mathematics programme
 b) Course transfers
 Not applicable for the course transfers

11. Criteria for award and classification
 As defined in Senate Regulation 5: Regulations governing undergraduate programmes of study.

12. Progression points:
 As defined in Senate Regulation 5:

13. Key/extra features:
 None

14. Indications of programme quality
 No differences

15. Summary of programme/pathway delivery and assessment:
 As per BSc Mathematics degree.

Appendix 1: Programme structure (programme regulations)

MAJOR IN MATHEMATICS

Students take 45cr in each semester.

Year 1

<table>
<thead>
<tr>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE (60cr year long, sem1 15cr, sem2 15cr)</td>
<td></td>
</tr>
<tr>
<td>MA1014 Calculus & Analysis (30cr)</td>
<td>MA1114 Linear Algebra (30cr)</td>
</tr>
<tr>
<td>OPTIONS (15cr)</td>
<td>OPTIONS (15cr)</td>
</tr>
<tr>
<td>MA1061 Probability (15cr)</td>
<td>MA1202 Introductory Statistics (15cr)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>MA1257 Mathematics and its impact on society (15cr)</td>
<td>MA1254 Mathematics in Business (15cr)</td>
</tr>
<tr>
<td>MA1104 Elements of Number Theory (15cr)</td>
<td>MA1272 Plane Geometry (15cr)</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE (30cr)</td>
<td>CORE (30cr)</td>
</tr>
<tr>
<td>MA2032 Vector Calculus (15cr)</td>
<td>MA2021 Differential Equations (15cr)</td>
</tr>
<tr>
<td>MA2132 Advanced Linear Algebra (15cr)</td>
<td>MA2133 Algebra (15cr)</td>
</tr>
<tr>
<td>OPTIONS (15cr)</td>
<td>OPTIONS (15cr)</td>
</tr>
<tr>
<td>MA2261 Linear Statistical Models (15cr)</td>
<td>MA2252 Introduction to Computing (15cr)</td>
</tr>
<tr>
<td>MA2510 Investigations in Mathematics (15cr)</td>
<td>MA2511 Business Applications of Mathematics (15cr)</td>
</tr>
<tr>
<td>MA2403 Statistical Distributions and Inference (15cr)</td>
<td></td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>YEAR LONG</th>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA3518 Mathematics Major Project</td>
<td>OPTIONS (45cr)</td>
<td>OPTIONS (45cr)</td>
</tr>
<tr>
<td>OPTIONS (45cr)</td>
<td>OPTIONS (45cr)</td>
<td></td>
</tr>
<tr>
<td>MA3012 Scientific Computing (15cr)</td>
<td>MA3002 Equations of Mathematical Physics (15cr)</td>
<td></td>
</tr>
<tr>
<td>MA3071 Financial Mathematics (15cr)</td>
<td>MA3072 Mathematical Portfolio Theory (15cr)</td>
<td></td>
</tr>
<tr>
<td>MA3077 Operational Research (15cr)</td>
<td>MA3201 Generalised Linear Models (15cr)</td>
<td></td>
</tr>
<tr>
<td>MA3152 Curves and Surfaces (15cr)</td>
<td>MA3121 Complex Analysis (15cr)</td>
<td></td>
</tr>
<tr>
<td>MA3131 Groups and Symmetry (15cr)</td>
<td>MA3153 Number Theory (15cr)</td>
<td></td>
</tr>
<tr>
<td>MA3013 Computational Partial Differential Equations with Finite Elements (15cr)</td>
<td>MA3022 Data Mining and Neural Networks (15cr)</td>
<td></td>
</tr>
</tbody>
</table>

(Note MA3072 has MA3071 as prerequisite. Full details on module specifications.)

Appendix 2: Module specifications
See module specification database http://www.le.ac.uk/sas/courses/documentation

Appendix 3: Skills matrix
As BSc Mathematics.