The following module specifications reflect the most current planning for module delivery in the 2021/22 academic year. In planning for module delivery in 2021/22 the University will continue to respond to the UK government’s projected road map, and also to any further relevant national developments and public health requirements relating to the coronavirus pandemic. The University will continue to develop our approach to delivery and assessment in 2021/22 and these specifications may be subject to change in the event of updating national guidance or public health requirements. The specifications will be updated as soon as practically possible to reflect changes as they arise.
BS1030 The Molecules of Life - An Introduction to Biochemistry and Molecular Biology

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
<th>Student Workload (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 1</td>
<td>Synchronous Lectures 22</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
<td>Synchronous Small Group Teaching 6</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Credits:</td>
<td>30</td>
<td>Synchronous Practical Classes/ Workshops/Professional Placements 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronous Other 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asynchronous Lectures/Presentations 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asynchronous Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Module Hours 300</td>
</tr>
</tbody>
</table>

Period:	Semester 1
Occurrence:	E
Coordinator:	Mark Leyland
Mark Scheme:	UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Practical report 1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Practical report 2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Essay</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>End of Module Assessment (open book)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Engagement</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Explain the basic chemical principles that underpin biochemistry
- Describe the structures of biological macromolecules and their components
- Explain the basic mechanisms of DNA replication, transcription and translation
- Discuss concepts of gene expression and control in prokaryotes and eukaryotes
- Discuss the relationship between protein structure and function
- Outline the key metabolic processes in cells and identify important mechanisms of metabolic regulation
- Demonstrate an ability to analyse experimental data
- Use and assess literature to produce written reports
- Reflect on and articulate motivations, strengths and experience of developing one or more transferable skills

Teaching and Learning Methods

Lectures, laboratory practical sessions, review sessions and group work, small group tutorials, revision sessions

Assessment Methods

Practical report, essay, final assessment, engagement

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Preparation of laboratory reports, completion of pre-lab tests, reading practical books in preparation for laboratory classes, researching and evaluating scientific literature, preparation of formative talks/presentations for small-group tutorials, problem-solving in support of small group tutorials, guided reading to support module material.
BS1040 The Cell - An Introduction to Cell Biology and Microbiology

Module Specification

Academic Year: 2021/2
Module Level: Year 1
Scheme: UG
Department: Biological Sciences
Credits: 30

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>22</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>6</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>15</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>23</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>15</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>219</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Discuss and explain the basic structure and function of cells and cellular organelles, membrane transport and cellular homeostasis.
- Discuss and explain some of the diversity of life on earth including some of the similarities and differences in structures and replication between viruses and other subcellular infectious agents, archaea, bacteria, unicellular and multicellular microbial eukaryotes.
- Describe how micro-organisms cause disease, are used in biotechnology and influence geochemical cycles.
- Discuss and explain the principles of systematics and classification, especially as they apply to micro-organisms.
- Demonstrate the use of techniques to study and handle cells and micro-organisms appropriately.
- Demonstrate competency in oral and written communication, numeracy, basic statistical skills, IT skills, problem solving, and group working.
- Demonstrate awareness of the importance of microbiology within economic, ecosystem and health sustainability issues.
- Use relevant sources to inform academic writing and demonstrate academic integrity in their submitted work through appropriate use of academic citation and referencing conventions.

Teaching and Learning Methods

Lectures, tutorials, practical classes, workshops, problem solving classes.

Assessment Methods

Practical coursework book, essay and end of module assessment.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Reading recommended literature and text books, reviewing lectures, preparing the essay and other written work, revising for the exam. Online tutorials on avoiding plagiarism provided by the School of Biological Sciences and by the University.

Last Published: 8 November 2021
Module Specification

BS1050 From Individuals to Populations - An Introduction to Genetics

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Blackboard test</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment (open book)</td>
<td>60</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Engagement mark</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

- Synchronous Lectures 1
- Synchronous Small Group Teaching 6
- Synchronous Practical Classes/Workshops/Professional Placements 12
- Synchronous Other 22
- Asynchronous Lectures/Presentations 22
- Asynchronous Other
- Guided Independent Study 79
- Total Module Hours 150

Period:
Semester 2

Occurrence:
E

Coordinator:
Ezio Rosato

Mark Scheme:
UG Module Mark Scheme

Academic Year:
2021/2

Module Level:
Year 1

Scheme:
UG

Department:
Biological Sciences

Credits:
15

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Explain how chromosomes are inherited through mitosis and meiosis and how genetic variation is generated.
- Perform elementary genetic analyses.
- Perform elementary statistical analyses.
- Recognise genetic diseases and genetically influenced disorders and appropriate methods of screening.
- Explain genetic variation and methods to measure it.
- Explain what factors influence global patterns of genetic diversity.
- Describe basic elements of molecular evolution of genes and genomes.
- Define DNA sequencing technologies and their use in modern genetics.
- Demonstrate competence in data analysis.

Teaching and Learning Methods
A combination of synchronous and asynchronous delivery methods including slides presentations, exploration of specific topics, general summaries, tutor-led review sessions, problem solving and experimental analyses.

Assessment Methods
Coursework assessment and examination. Students earn engagement marks (10%) by submitting 5 out of 6 formative assessments (or 80% of the due number if they have mitigating circumstances).

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparing for and revising all synchronous and asynchronous material delivered through the module. Consulting textbooks to improve and widen understanding. Preparing for and producing coursework. Preparing for the final examination.
BS1060 Multicellular Organisation - An Introduction to Physiology, Pharmacology and Neuroscience

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Test 1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Test 2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Lab Practical Report</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Engagement</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>0</th>
<th>Synchronous Small Group Teaching</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Volko Straub
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe general aspects of the organisation, function and operating principles of the main physiological systems in the human body.
- Apply basic concepts of pharmacology to classes of cell surface receptors for neurotransmitter, hormones and local mediators.
- Describe the properties of cell surface receptors, their functions and relevant signalling pathways.
- Explain how individual physiological systems work together to achieve whole body homeostasis.
- Demonstrate understanding of human physiological measurements
- Handle, manipulate, display and statistically analyse physiological data.

Teaching and Learning Methods

Lectures, practical classes, tutorials

Assessment Methods

Tests x2, report and engagement

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

- Read a variety of relevant source material including textbooks and scientific articles. Specific reading tasks will be posted during the lectures and on Blackboard.
- Prepare report including data handling.
- Revise module content guided by lecture material and module workbook as well as external sources.
- Prepare and revise material covered in group work sessions (listed as tutorials).
- Prepare for practical sessions assisted by practical handbooks.
- Complete formative online tests to check understanding of material and prepare for summative online tests and exams.

Last Published: 8 November 2021
BS1070 Biodiversity and Behaviour - An Introduction to Zoology

Academic Year: 2021/2
Module Level: Year 1
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Sinead Drea
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>12</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>12</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>22</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>6</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>98</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Describe and discuss:
 • Phylogeny and the tree of life
 • Basic animal and plant development
 • Animal and plant origins and diversity
 • Biodiversity/ecology and its importance
 • Animal behavioural/physiological adaptations
 • Use appropriate statistical analysis software to analyse data

Teaching and Learning Methods
A combination of synchronous and asynchronous delivery methods including slides presentations, exploration of specific topics, general summaries, tutor-led sessions, statistical/data analyses.

Assessment Methods
Coursework assessment, engagement and end of module assessment.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparing for and revising all synchronous and asynchronous material delivered through the module. Consulting textbooks/papers. Preparing for and producing coursework. Preparing for the final end of module assessment.
Module Specification

Module: BS2004 Contemporary Techniques in Biological Data Analysis

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 2</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>15</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Eamonn Mallon
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures/Presentations</td>
<td>11</td>
<td></td>
<td></td>
<td>11</td>
<td>22</td>
<td>95</td>
<td>150</td>
</tr>
<tr>
<td>Practical Classes</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Understand various classical tests as examples of linear modules - assessed by exam
- Understand the basic logic and set up of GLMs - assessed by exam
- Design a statistically robust experiment - assessed by exam and MCQs
- Explain how various complications (eg interactions) are implemented in GLMS - assessed by exam
- Choose the correct statistical mode, ie model selection - assessed by exam
- Implement practical aspects of the above in the statistical programming language R - assessed by MCQs

Teaching and Learning Methods

Lectures and workshops

Assessment Methods

Per sessions MCQ's and open book analyses

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Background reading, practice datasets, answering MCQs
Module Specification

BS2009 Genomes

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Celia May
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lab Practical Report</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of Module Assessment</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Engagement Marks</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

- Synchronous Lectures 0
- Synchronous Small Group Teaching 7
- Synchronous Practical Classes/Workshops/Professional Placements 6
- Synchronous Other 19
- Asynchronous Lectures/Presentations 21
- Asynchronous Other 0
- Guided Independent Study 97
- Total Module Hours 156

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- describe how prokaryotic and eukaryotic genomes are organised
- discuss mechanisms operating to influence this organisation
- explain basic processes of genome maintenance
- analyse experimental data
- perform simple bioinformatic analyses
- propose experimental strategies to study and manipulate genomes

Teaching and Learning Methods
Asynchronous lectures; synchronous discussion groups, tutorials and clinics; laboratory and computer practical classes.

Assessment Methods
Practical analysis, end-of-module assessment (open book), engagement marks associated with practical, tutorial and lecture programme components (e.g. submission of answers to a variety of tasks to Blackboard, Top Hat, etc).

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Last Published: 8 November 2021
BS2013 Physiology and Pharmacology

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 2</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>15</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe the basic structure of the various classes of cell surface receptors, explain the intracellular signalling pathways regulated by such receptors, provide examples of receptors that possess multiple subtypes for a given hormone or neurotransmitter (agonist).
- Undertake a quantitative analysis of drug-receptor interactions and interpret the information; describe how drugs can modify agonist-receptor interactions and be able to quantify these effects.
- Discuss the mechanisms by which drugs can modify the function of the cardiovascular system to treat disease states such as hypertension.
- Plan experiments and generate data via a computer-based simulation package in order to address the sites and mechanisms of drug addition.
- Handle, graph, manipulate, tabulate and analyse pharmacological data derived from experiments.
- Demonstrate a range of transferable skills including written communication, information technology, numeracy, team working, problem solving, examination technique, information handling.

Teaching and Learning Methods

Asynchronous: understanding concepts and analytical/presentation skills
Synchronous: theory and concepts, analysis and presentation of data
Directed reading

Assessment Methods

Practical assignments
End of module assessment

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Reviewing material reviewed in asynchronous sessions, undertaking guided activities in preparation for synchronous sessions.
Preparation and generation of material for practical assignments. Reading literature relevant to these topics to gain further insight into the module content.

Student Workload (hours)

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Assessment Description</td>
<td>Weight %</td>
<td>Qual Mark</td>
<td>Exam Hours</td>
<td>Ass’t Group</td>
<td>Alt Reass’t</td>
</tr>
<tr>
<td>001</td>
<td>Lab practical reports</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment</td>
<td>60</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Module Hours: 150

Last Published: 8 November 2021
BS2014 Exercise Physiology and Pharmacology

Module Specification

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: John Mitcheson
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/ Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lab practical report</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>002</td>
<td>End of module assessment</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>003</td>
<td>Engagement</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>110</td>
<td>150</td>
</tr>
</tbody>
</table>

Total Module Hours 150

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Explain the structure and function of the neuromuscular junction.
- Explain the different elements of the musculoskeletal system and skeletal muscle contraction.
- Integrate and explain the control mechanisms responsible for regulating the musculoskeletal, cardiovascular and respiratory systems through a consideration of the acute and chronic effects of, for example, aerobic exercise at the metabolic, cellular and systems levels.
- Describe the limitations to exercise and selected relationships between exercise, health and disease.
- Explain the use and abuse of drugs in performance sport, including cellular and systems effects.
- Demonstrate the ability to handle, manipulate, display and statistically analyze physiological data.
- Use a range of transferable skills including written communication, information technology, numeracy, team working, problem solving, examination technique, information handling.

Teaching and Learning Methods

Asynchronous presentations with associated work activities. Synchronous summary and/or Q&A sessions at the end of each lecture topic. Tutorials with problem solving worksheets. Circumstances permitting - a laboratory based practical class. Data handling workshops. Directed reading

Assessment Methods

Practical report and supporting work, end of module assessment, and engagement. Engagement will be assessed by attendance (and participation) at tutorials and completion of tutorial worksheets. Marks will be recorded by tutors.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Preparation for practical class. Completion of worksheets for tutorials. Practical report preparatory work and report generation. Reviewing asynchronous presentations and completion of associated learning activities. Additional reading around subject areas and revision for examination.
BS2015 Physiology of Excitable Cells

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Paul Glynn
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>MCQ/SAQ Coursework 1</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>MCQ/SAQ Test 1</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>MCQ/SAQ Coursework 2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>MCQ/SAQ Test 2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>MCQ/SAQ Test 3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

BS2015 extends material from BS1060 (which is a pre-requisite for BS2015). The module aims to develop the student’s understanding of:

1. structure, organization, and function of the nervous system and its components.
2. qualitative and quantitative aspects of membrane excitability, ion channel function, and axonal conduction.
3. Transmission at, and pharmacology of, chemical synapses.
4. qualitative and quantitative aspects of integration at synapses; synaptic plasticity.
5. the physiology of vision to demonstrate how the nervous system adapts or mal-adjusts in response to external factors.

In addition, BS2015 entails use of, and so aims to enhance the student’s facility with, transferable skills: numeracy; data-handling/analysis; concise written communication.

Teaching and Learning Methods

All taught material will be delivered online.

Assessment Methods

All assessment will be open-book. Memorisation is not required. There is NO final exam.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Completion of worksheets. Data handling questions, Looking through lecture material before and after lectures, reviewing lecture recordings. Additional reading around subject areas and revision for examination.
Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Explain the use of genetics to dissect gene regulation and function during development.
- Describe how genetics is used to study human disease.
- Analyse human pedigrees to determine inheritance patterns of genes.
- Relate disruptions in the genome to expression of diseases and mutant phenotypes.
- Explain the use of population genetic analysis.
- Critically analyse experimental data.
- Demonstrate competency in accessing information, organising references and writing and producing an essay.

Teaching and Learning Methods

Asynchronous lectures; synchronous discussion groups, problem-solving tutorials and clinics; laboratory class, synchronous experimental analysis and design sessions.

Assessment Methods

Experimental analysis, Essay (1500 words), End of Module Assessment (open book)

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Preparation for lectures and reviewing lecture presentations. Reading based on lecture topics. Preparation for problem-solving tutorials and follow-up of provided solutions. Preparing for experimental classes and preparing Experimental Analysis for submission. Researching and writing essay for submission. End-of-Module Assessment preparation.
Module Specification

BS2030 Principles of Microbiology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Hasan Yesilkaya
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Explain basic techniques for isolation, handling and identification of microbes, and demonstrate an ability to apply microbiology techniques in the laboratory.
- Demonstrate an awareness of microbial diversity and microbial cell structure.
- Evaluate ways in which genetic techniques can be applied to the study of bacteria and applications of these techniques in biotechnology.
- Describe the features of specific microorganisms that are important in infections disease and bioindustry.
- Communicate in writing an awareness of the concepts of microbiology, including the microbiology in health and environmental sustainability.

Teaching and Learning Methods
Lectures, laboratory practicals.

Assessment Methods
Practical report and end of module assessment.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Guided reading (text books and research journal articles), reviewing lectures, preparing written work.

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Lab practical report</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of module assessment</td>
<td>65</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>11</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>2</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops</td>
<td></td>
</tr>
<tr>
<td>Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>23</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>6</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>108</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>
BS2032 Immunology and Eukaryotic Microbiology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Andrea Cooper
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Workbook</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>End of module assessment</td>
<td>50</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)
- Synchronous Lectures 3
- Synchronous Small Group Teaching
- Synchronous Practical Classes/Workshops/Professional Placements 8
- Synchronous Other 10
- Asynchronous Lectures/Presentations 10
- Asynchronous Other 10
- Guided Independent Study 109
- Total Module Hours 150

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Describe the major features of eukaryotic microbiology and immunology.
- Perform microbiological and immunological procedures.
- Present and interpret laboratory results.
- Demonstrate competence in acquiring information from the scientific literature and use of basic bioinformatics tools.
- Be able to work effectively in small groups.
- Demonstrate effective time management.
- Demonstrate awareness of health sustainability.

Teaching and Learning Methods
Lectures
Laboratory practical classes
Optional field trip

Assessment Methods
- workbook: 40%
- Exam (1.5 hours): 60%

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Reading a wide range of literature relevant to the content of the module, including current news, textbooks and scientific articles. Reviewing lectures, revising for assessment.

Last Published: 8 November 2021
BS2040 Bioinformatics

Module Specification

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Richard Badge

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>10</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>4</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>5</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>22</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>10</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>99</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Use computer systems to access bioinformatic databases.
- Explain the use of computers in analysing genomic data.
- Describe how protein structures are determined and modelled.
- Compare DNA and protein sequences to analyse gene structure and function.
- Demonstrate competency in accessing information, organising references and writing and producing practical reports.

Teaching and Learning Methods

Video Presentations; Computer Practical Classes; Tutorials with group-work tasks and discussion; Engagement activities; Directed Study; Guided Independent Study.

Assessment Methods

Practical Reports; Open-Book End-of-Module Assessment; Engagement activities (satisfactory completion of online tests)

Pre-Requisites

-

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

Students will be directed to essential reading (textbooks; selected journal articles) and recommended reading (journal articles, books, webpages) to complement the video presentations and assist preparation for End-of-Module Assessment and Computer Practical reports. Preparation for computer practical, execution of practice computational analyses. Planning, drafting and preparation of Computer Practical reports. Problem solving in support of small-group tutorials. Engagement activities (online tests contribution). Revising for End-of-Module Assessment.

Details of indicative activities subject to modification as required.

Last Published: 8 November 2021
Module Specification

BS2066 Behavioural Neurobiology

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
<th>Student Workload (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 2</td>
<td>Synchronous Lectures 11</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
<td>Synchronous Small Group Teaching</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
</tr>
<tr>
<td>Credits:</td>
<td>15</td>
<td>Synchronous Other 7</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Tom Matheson
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Practical Report 1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment</td>
<td>65</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Engagement (tutorial participation):</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Explain and critically discuss the main topics with reference to appropriate source material, including primary research papers.
- Plan and carry out quantitative analyses of behaviour on existing video recordings, analyse and interpret the quantitative data, critically review the experimental paradigm, and write up as a formal report.
- Discuss the results of experiments in the context of the related research literature.
- Use a computer modelling environment to design and carry out tests of neural network function.
- Analyse the patterns of connectivity in a model neural network to explain its functional organisation.

Teaching and Learning Methods

- Asynchronous mini-lectures supported by asynchronous pre-lecture and post-lecture material.
- Asynchronous practical exercise supported by asynchronous pre-practical and post-practical material. The practical integrates critique of experimental design with training in quantification of behaviour and generic data analysis skills using existing research data as an example.
- Asynchronous interactive quizzes and self-learning exercises.
- Synchronous online interactive review sessions (face-to-face if possible)
- Synchronous online whole-class tutorials (face-to-face if possible)
- Online group work.
- Synchronous and asynchronous online Instructor feedback.
- Guided independent study.

Assessment Methods

- Practical Report: 40%
- End of Module Assessment: 60%

Pre-Requisites

Co-Requisites

Excluded Combinations

BS2077

Guided Independent Study: Indicative Activities

- Reading textbooks and primary research papers from the reading list and found independently to support the framework set out in the course material.
- Preparing for the practical by engaging with the supporting material and reading related research papers.
- Analysing provided video recordings to generate quantitative behavioural data. Interpreting the data in light of the experimental design, and relating them to the relevant literature.
- Preparing for tutorials by engaging with relevant online material in advance, reading relevant literature, and preparing for group work.
- Developing knowledge and preparing for the final online assessment exam by: revising lecture notes, online learning resources, feedback materials (from tutorials and the practical reports), and material from the reading list as well as independently found sources.

Last Published: 8 November 2021
Module Specification

BS2077 Neurobiology and Animal Behaviour

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Swidbert Ott
Mark Scheme: UG Module Mark Scheme

No. Assessment Description Weight % Qual Mark Exam Hours Ass't Group Alt Reass't
001 Practical Report 30
003 End of Module Assessment 65 2
004 - Engagement (tutorial participation) 5

Student Workload (hours)
Synchronous Lectures 11
Synchronous Small Group Teaching
Synchronous Practical Classes/Workshops/Professional Placements
Synchronous Other 7
Asynchronous Lectures/Presentations 25
Asynchronous Other 7.5
Guided Independent Study 99.5
Total Module Hours 150

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Explain and critically discuss with reference to appropriate source material, including primary research papers.
- Plan and carry out quantitative analyses of behaviour on existing video recordings, analyse and interpret the quantitative data, critically review the experimental paradigm, and write up as a formal report.
- Formulate hypotheses and test them using appropriately chosen and interpreted statistical techniques.

Teaching and Learning Methods
• Asynchronous mini-lectures supported by asynchronous pre-lecture and post-lecture material.
• Asynchronous practical exercise supported by asynchronous pre-practical and post-practical material. The practical integrates critique of experimental design with training in quantification of behaviour and generic data analysis skills using existing research data as an example.
• Asynchronous interactive quizzes and self-learning exercises.
• Synchronous online interactive review sessions (face-to-face if possible)
• Synchronous online whole-class tutorials (face-to-face if possible)
• Online group work.
• Synchronous and asynchronous online Instructor feedback.
• Guided independent study.

Assessment Methods
- Practical Report: 40%
- End of Module Assessment: 60%

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Explain and critically discuss with reference to appropriate source material, including primary research papers.
- Plan and carry out quantitative analyses of behaviour on existing video recordings, analyse and interpret the quantitative data, critically review the experimental paradigm, and write up as a formal report.
- Formulate hypotheses and test them using appropriately chosen and interpreted statistical techniques.

Teaching and Learning Methods
• Asynchronous mini-lectures supported by asynchronous pre-lecture and post-lecture material.
• Asynchronous practical exercise supported by asynchronous pre-practical and post-practical material. The practical integrates critique of experimental design with training in quantification of behaviour and generic data analysis skills using existing research data as an example.
• Asynchronous interactive quizzes and self-learning exercises.
• Synchronous online interactive review sessions (face-to-face if possible)
• Synchronous online whole-class tutorials (face-to-face if possible)
• Online group work.
• Synchronous and asynchronous online Instructor feedback.
• Guided independent study.

Assessment Methods
- Practical Report: 40%
- End of Module Assessment: 60%

Pre-Requisites

Co-Requisites

Excluded Combinations
BS2066

Guided Independent Study: Indicative Activities
• Reading textbooks and primary research papers from the reading list and beyond to support the framework set out in the course material.
• Preparing for practicals and tutorials by engaging with the supporting material, reading relevant research papers and preparing for group work.
• Analysing provided video recordings to generate quantitative behavioural data. Interpreting the data in light of the experimental design, and relating them to the relevant literature.
• Developing knowledge and preparing for the final online assessment by: revising lecture notes, online learning resources, feedback materials (from tutorials and the practical report), and material from the reading list as well as independently found sources.

Last Published: 8 November 2021
Module Specification

BS2091 From Genes to Proteins

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Olga Makarova
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>23</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>12</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>25</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>90</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Describe how information encoded in DNA is transcribed into RNA and how primary transcripts are processed to achieve their final, functional form.
- Demonstrate the principles of the genetic code and translation of genetic information from messenger RNA into protein.
- Carry out and interpret simple experiments illustrating aspects of the above.
- Explain the principles underpinning the regulation of gene expression in prokaryotes and eukaryotes.
- Describe molecular mechanisms of DNA manipulation by specified enzyme(s).
- Develop transferable skills in writing and data analysis.

Teaching and Learning Methods

Lectures, interactive sessions, practicals, computer-based sessions, revision sessions

Assessment Methods

- End of Module assessment: 60% (4 hours timed online assessment)
- Practical Report: 40%

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Guided reading, recommended audiovisual materials. Lectures made available for review using Reflect. Preparation for synchronous sessions. Research for long-format writing task.

Last Published: 8 November 2021
Module Specification

Module Code: BS2092
Module Title: Molecular Cell Biology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Sue Shackleton
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:

1. Describe the principles and outline the steps involved in common cell biology techniques.
2. Explain how membrane and secreted proteins are post-translationally processed and targeted to different subcellular and extracellular locations.
3. Explain how signalling pathways integrate extracellular signals to allow the regulation of complex cellular processes such as metabolism and cell proliferation.
4. Explain the respective roles of microtubules, actin and intermediate filaments in the maintenance of cell architecture and function.
5. Describe the processes involved in mitotic cell division and eukaryotic cell cycle control.
6. Develop a strategy to address a specific scientific hypothesis and be able to critically analyse the results of such experiments.

Teaching and Learning Methods

- Recorded lectures, with associated activity sheets
- Weekly review sessions
- Practical
- Tutorials

Assessment Methods

- Tutorial Multiple Choice Question tests (12%)
- Practical Report (28%)
- End of module assessment (60%)

Intended Learning Outcomes

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Tutorial Test 1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Tutorial Test 2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Tutorial Test 3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Lab practical report</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>End of Module Assessment (open book)</td>
<td>60</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

- **Synchronous Lectures:** 3
- **Synchronous Small Group Teaching:** 6
- **Synchronous Practical Classes/Workshops/Professional Placements:** 11
- **Asynchronous Lectures/Presentations:** 20
- **Asynchronous Other:** 6
- **Guided Independent Study:** 104
- **Total Module Hours:** 150

Guided Independent Study: Indicative Activities

Last Published: 8 November 2021
Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Discuss the properties of enzymes and describe the different ways protein activity is regulated.
- Discuss the molecular properties of proteins involved in energy transduction.
- Explain the integration and regulation of metabolism.
- Demonstrate the ability to analyse the molecular features of proteins.
- Analyse experimental data to solve problems.

Teaching and Learning Methods
Lectures, interactive tutorials, practicals, computer-based sessions, revision sessions.

Assessment Methods
- Computer modelling practical: 10%
- Presentation: 20%
- Exam: 70% - 2 hours

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Guided reading on key aspects of the module, preparation for laboratory practicals, analysis of data generated from laboratory practical, problem-solving in interactive tutorials, completion of online tests for formative assessment, reading of scientific literature to develop presentations, preparation of slides for presentations.
Module Specification

BS3000 Evolutionary Genetics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Research Poster</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Research Essay</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>End of Module Assessment</td>
<td>50</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: Ed Hollox
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>Research Poster</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Research Essay</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>End of Module Assessment</td>
<td>50</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E1
Coordinator: Ed Hollox
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Demonstrate an understanding of the process of mutation, drift and the molecular clock in phylogenetics and evolutionary genetic analysis.
- Discuss the methods used for inferring natural selection from molecular and experimental data.
- Discuss the role of gene duplication in evolution.
- Critically evaluate the various evolutionary pressures that gave rise to modern humans.
- Explain the in the genetic basis of body plan evolution.
- Critically evaluate research publications.
- Relate experimental evidence to its interpretation.

Teaching and Learning Methods
These topics will be covered in approximately 22 hours of asynchronous teaching material, combined with two 2 hour synchronous computer workshops and 11 hours of timetabled synchronous question and answer sessions.

Assessment Methods
A research poster and recorded oral summary based on a recent research paper will contribute 20% of the module mark.
A 2500 word essay based on the same research paper will contribute 30% of the module mark.
A two hour open-book assessment conducted within a 24 hour window will contribute 50% of the module mark.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>150</td>
</tr>
</tbody>
</table>

BS3000 Evolutionary Genetics

Last Published: 8 November 2021
Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe the main features which distinguish malignant cells from normal cells, the mechanisms which regulate their proliferation and survival, and how this information can be used to design new therapies.
- Integrate information from diverse sources to understand the origins of cancer and the processes involved in the progression into a full malignancy.
- Conduct a literature research project and write a critical appraisal of the subject, summarising the most important facts.

Teaching and Learning Methods

There will be 4 small group synchronous sessions (60-minute tutorials) spread over the length of the course. A work sheet outlining the aims and objectives of each session will be available on Blackboard prior to the tutorials and some preparation work will be needed. Tutorials are not marked, but attendance and participation are compulsory and will be monitored. The tutorials will be related to the contents of the lectures and the module assessments.

Assessment Methods

BS3003 has no exam. There will be three forms of assessment: an infographic (38%), a 5000-word essay (56%) and three multiple choice question computer tests (MCQ). These MCQs tests will help guide the students through the curriculum. They will be spread over the weeks of the module and related to the topics delivered in the previous weeks.

Pre-Requisites

Co-Requisites

Excluded Combinations

- **Guided Independent Study: Indicative Activities**

Each topic has a list of essential papers which guides the students to extra reading. Preparation for tutorials is based on a list of questions that the students have to research and answer ahead of the session, thus guiding them through the acquisition of basic knowledge to reinforce what is taught in lectures. Information on how to write an essay is given to students in documents and in tutorial discussions, in order to guide them through the acquisition of the skills needed to complete the appropriate ILOs.
Module Specification

BS3010 Gene Expression: Molecular Basis and Medical Relevance

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Engagement (MCQ test 1)</td>
<td>4</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Engagement (MCQ test 2)</td>
<td>4</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Engagement (MCQ test 3)</td>
<td>4</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Debate content and performance (presentation)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>End of Module Assessment (open book)</td>
<td>58</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: Shaun Cowley
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

- Synchronous Lectures
- Synchronous Small Group Teaching 3
- Synchronous Practical Classes/Workshops/Professional Placements
- Synchronous Other 12
- Asynchronous Lectures/Presentations 20
- Asynchronous Other
- Guided Independent Study 115
- Total Module Hours 150

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Acquire a thorough knowledge of the molecular mechanisms of gene expression and its control, in mammals, to enable them to pursue independent study in this area.
- Describe how gene expression can be perturbed and cause disease.
- Explain the role of creative thought and rigorous tests of hypotheses in science.
- Appraise published work and become independent thinkers in the planning and interpretation of experimental approaches to discovering how gene activity is controlled.
- Develop skills in assimilation and appraisal of data, reasoning and communication that will prepare them for more general employment.

Teaching and Learning Methods

Lectures, discussing prepared answers, computer class, extensive guided reading

Assessment Methods

Examination (final)
Debate content and performance

Pre-Requisites

BS2091

Excluded Combinations

-
Guided Independent Study: Indicative Activities

Preparation for debates will require group organisation and planning, independent reading of research papers, and preparation of Powerpoint presentations illustrating published data and other key points in support of the case they are making in the debate (and illustrations of weaknesses in the data being presented by their opponents).
BS3011 Microbial Pathogenesis and Genomics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Christopher Bayliss
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>1</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>6</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>7</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>7</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>17</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>112</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Present in detail and explain the genetic mechanisms underlying selected processes in bacteria.
- Demonstrate knowledge of the molecular and genetic basis of strategies employed by microorganisms to invade host tissue, avoid host defence mechanisms and proliferate at sites of infection.
- Analyse and interpret data and information from primary literature sources, and organise and communicate it in writing.
- Demonstrate, in writing, a capacity for critical analysis of a specialised or topical issue in microbiology.
- Design a research activity to determine the contributions of a virulence factor or other mechanism to an infectious disease. Demonstrate use of bioinformatics tools to analyse and understand microbial virulence traits.

Teaching and Learning Methods

Lectures, tutorials, problem solving classes, formative assessment, attending Departmental and College external seminars to enhance understanding of the impact of scientific research and to increase scientific knowledge related to the module.

Assessment Methods

Online data analysis and bioinformatics test.
Written reports on experimental design and analysis.

Pre-Requisites

BS2009

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Reading research literature, reviewing lectures, reviewing and understanding lecture material, analysing data and information for tutorials and seminars, preparing coursework.
Module Specification

BS3013 Human and Environmental Microbiomics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Martha Clokie
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>8</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>10</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>18</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>112</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Discuss how microbes play essential roles in planetary and human health and sustainability.
- Discuss how our understanding of microbiology has been transformed over the last decade by advances in sequencing technology, which has facilitated a deep understanding in microbial diversity and evolution and physiology both from whole genome and metagenome approaches.
- Identify the key roles played by microbes in human health and in the wider environment including aquatic and terrestrial environments.
- Demonstrate in the context of the above areas of environmental microbiology, experience of accessing information from the scientific literature in electronic and written form, and its organisation through oral presentation.
- Understand the roles viruses have in shaping microbial communities in both human and environmental microbiomes.

Teaching and Learning Methods

Lectures, seminars

Assessment Methods

Seminar
Exam (final)

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Guided reading (research journal articles), reviewing lectures, preparing written work, revising for exam.

Last Published: 8 November 2021
Module Specification

Module: Molecular and Cellular Immunology

Academic Year: 2021/2

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>End of module assessment</td>
<td>50</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>News and Views</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>8</td>
</tr>
<tr>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>22</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>115</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Period: Semester 1

Occurrence: E

Coordinator: Andrea Cooper

Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Demonstrate a detailed knowledge of the mammalian immune system, including specific and non-specific immune responses.
- Explain the molecular and cellular approaches used to investigate mechanisms of immunity.
- Demonstrate a capacity for critical analysis of a specialised or topical issue in immunology

Teaching and Learning Methods

Lectures, seminars and tutorials including tutorials on data analysis and interpretation.

Assessment Methods

Data handling paper (final). Research papers will be provided by contributors and related to a module ILO topic. Task: present selected experiment in the context of the area (attendance of lectures necessary) and analyse results (individually).

News and views article - task: present research paper(s) related to module ILOs succinctly suitable for a broad (non-specialist) reader.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Reading a wide range of literature relevant to the overall content of the module. Practice for assessment: data handling (reading and analysing example papers) and practice for the scientific interview.
Module Specification

BS3016 Neuroscience Futures

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Jian Liu
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>10</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>135</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

No.	Assessment Description	Weight %	Qual Mark	Exam Hours	Ass’t Group	Alt Reass’t
001 | Essay (1500 words) | 30 | | | | |
002 | Journal Club Presentation | 10 | | | | |
003 | Journal Club Evaluation tests | 20 | | | | |
004 | Examination (Final) | 40 | | 1.5 | | |

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Interrogate the primary neuroscience literature in current research areas, led by relevant academic staff and to develop critical faculties.
- Using specific examples, describe and explain recent advances in neuroscience with special reference to new and developing methodologies.
- Read, analyse, and interpret data from the neuroscience literature.
- Communicate complex ideas and research findings using a variety of appropriate media.
- Integrate relevant information and critique research in the context of an appropriate neuroscience field.

Teaching and Learning Methods

Lectures and Research Seminars with Journal Clubs in which there will be oral discussion with questions and answers (as in tutorials) alongside online evaluation; students will have directed reading and study support sessions.

Assessment Methods

Essay (1500 words)
Journal Club Presentation
Journal Club Evaluation tests
Examination (final)

Pre-Requisites

BS2015: Neuroscience
BS2066: Behavioural Neurobiology

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

For each conference the students will read one research paper which will be discussed in the Journal Club. They will participate in online tests for each conference. Their first assessment (JCI) will take the form of an introduction in the research area of one Conference: the students will each collate a Virtual Journal of 5 research articles (one article provided as a starting point) and write a 1000 word introduction, explaining the contribution of these articles to research in that Conference topic.

Look through lecture and seminar materials before and after each session and answer formative quizzes. Conduct additional reading around subject areas, read each research article in preparation for the Journal Club and do the quizzes in each conference; these will be preparation for their written journal critique (TE) and the DAQ assessments. Review lecture recordings, and additional materials online.

Last Published: 8 November 2021
Module Specification

BS3031 Human Genetics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Celia May
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Discuss the variety and complexity of the relationships between mutations in or near genes and the manifestation of disease phenotypes.
- Discuss the many ways that research in human genetics can be used.
- Solve problems in genetics and interpret the outcome.
- Critically assess a range of research papers in the field of human genetics to extract essential information.
- Conduct an independent literature search on a topic in human genetics and construct a coherent written overview.

Teaching and Learning Methods
Lectures and seminar. Problem-solving tutorials. Help clinics. Directed learning and self-directed learning

Assessment Methods
- Essay (3000 words)
- Problem based assessment
- Examination (Final)

Excluded Combinations
-

Guided Independent Study: Indicative Activities
Preparation for lectures and follow-up.
Preparation for problem solving tutorial and follow-up.
Research topic for assessed essay and essay preparation.
Exam preparation

Student Workload (hours)

<table>
<thead>
<tr>
<th>Component</th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay (3000 words)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td>150</td>
</tr>
<tr>
<td>Problem based assessment</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of module assessment</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Last Published: 8 November 2021
Module Specification

BS3033 Physiology, Pharmacology and Behaviour

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 3</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>15</td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td>150</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Frank Proudlock
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Essay (2000 words)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Group Presentation</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of Module Assessment</td>
<td>50</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Engagement</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Interpret the hierarchical and parallel processing of visual information by the brain and be able to relate this to the process of image extraction.
- Correlate the roles of the different brain structures involved in voluntary movement and be able to reconstruct, in overview, their interactions during movement generation.
- Evaluate the role of a variety of brain mechanisms in generating feeding behaviour and pursuit of other rewards.
- Describe some of the different approaches to investigating CNS function and compare their relative advantages and disadvantages.
- Relate the role of integration within the CNS with particular reference to sensori-motor integration, higher functions such as learning, memory and attention and to higher disorders of the CNS such as schizophrenia.
- Work individually and in groups, be able to discuss orally, or present in writing a critical analysis of a theory of some aspects of brain function based on the use of recent research reports.

Teaching and Learning Methods

Lectures; critical analysis with peers of mainstream science documentary; practical classes, discussion, and preparation; directed reading

Assessment Methods

Group presentation
Essay (2000 words)
End of module assessment (final)
Engagement

Pre-Requisites

-

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

- Read a variety of relevant source material including textbooks and scientific articles. Specific reading tasks will be posted as part of the course material and on Blackboard.
- Research scientific literature to answer coursework essay.
- Research scientific literature relevant to group presentation.
- Revise module content guided by module activities as well as external sources.
- Prepare for practical sessions assisted by module activities.
- Complete formative online engagement activities.
Module Specification

BS3054 Molecular & Cellular Pharmacology

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Quantitative pharmacology workbook</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of module assessment</td>
<td>70</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: John Challiss
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Quantitative pharmacology workbook</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Examination (Final)</td>
<td>70</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Explain how receptors can be regulated by diverse ligands (agonists, antagonists, inverse agonists, allosteric modulators).
- Describe the structures and functions of the major classes of receptor and the key components of their signal transduction and regulatory cascades.
- Describe the different mechanisms of receptor signal transduction and desensitization and their physiological and pharmacological significance.
- Describe, both in general terms and through the use of real examples, how the pharmacological manipulation of different classes of protein (receptors, enzymes) can have specific therapeutic benefits.
- Explain how acute cell signalling events relate to longer-term changes in cell phenotype and cell fate.
- Apply pharmacological principles to analyse and identify potential ‘druggable’ targets relevant to specific diseases and to understand drug discovery strategies that might be pursued to develop new drugs.
- Utilize appropriate computer software accurately to analyse pharmacological datasets.

Teaching and Learning Methods

Lectures; tutorials; computer-based, supervised work-session; problem-solving exercises; directed reading, computer-based, on-line quizzes.

Assessment Methods

Quantitative pharmacology workbook
End of module assessment

Pre-Requisites

BS2013

Co-Requisites

Excluded Combinations

Student Workload (hours)

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td>10</td>
<td></td>
<td>18</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: John Challiss
Mark Scheme: UG Module Mark Scheme
Guided Independent Study: Indicative Activities

• Each taught topic will be supported by Reading Lists, which will include recommended text books that can be used to provide basic support, as well as key reviews and original research articles. For some of these materials formative quizzes will be provided on-line so that students are able to test their understanding of key aspects of the recommended reading.

• To gain problem-solving skills in pharmacology the computer-based work-session will provide students with skills necessary to utilize a data-analysis programme such as GraphPad Prism. Students will then be expected to complete a workbook (as an assessment element) in which a number of datasets will require analysis and interpretation.
Module Specification

BS3055 Molecular & Cellular Neuroscience

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Jonathan McDearmid
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>1</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>44</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>83</td>
</tr>
</tbody>
</table>
Total Module Hours: 150

No. Assessment Description Weight % Qual Mark Exam Hours Ass't Group Alt Reass't
001 News & Views Assessment 30
002 End of module assessment 70 2.5

No. Assessment Description Weight % Qual Mark Exam Hours Ass't Group Alt Reass't
001 News & Views Assessment 30
002 Examination (Final) (2.25 hours plus 15 minutes reading time) 70 2.5

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Summarise the properties of ion channels, receptors and signalling pathways involved in synaptic transmission.
- Explain the spatial and temporal sequence of events and signals that underlie the development of the nervous system.
- Explain dendritic propagation and the mechanisms underlying action potential generation.
- Explain the molecular organisation of a neurone and the role of receptor and signalling proteins in pre and post-synaptic regions.
- Identify the specialized features employed to transmit information between neurons and to understand how neuronal excitability is regulated.
- Analyse data series and interpret neuroscience experimental results.

Teaching and Learning Methods

Lectures - providing introductory material and helping to guide independent study.
Tutorials - a combination of data interpretation/problem based learning and critical assessment of current literature.
Essays – an opportunity for students to research, in greater depth, a topic that is likely to be examined.

Assessment Methods

Essay (1500 words)
Examination (final)

Pre-Requisites

BS2013 or BS2014 or BS2015 or BS2066

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

- Read a variety of relevant source material including textbooks and scientific articles. Specific reading tasks will be posted as part of the course material and on Blackboard
- Research scientific literature to answer coursework News and Views Tutorial
- Revise module content guided by module activities as well as external sources.
- Complete online activities provided

Last Published: 8 November 2021
Module Specification

BS3056 Cellular Physiology of the Cardiovascular System

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 3</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>15</td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>4</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>3</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>8</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>20</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>1</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>114</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Noel Davies
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe the cardiovascular system and the general control mechanisms involved in regulating the cardiovascular system including the exchange of solutes between blood and tissue.
- Explain the mechanisms of ion transport at the cell membrane and understand how ion channel structure relates to function.
- Discuss the molecular processes involved in regulating ion channels and contractile proteins within the cardiovascular system. Describe the cellular mechanisms leading to the generation and regulation of the cardiac action potential.
- Explain the mechanisms that lead to contraction of both cardiac and smooth muscle and how these processes are controlled by the regulation of intracellular Ca²⁺.
- Discuss disorders of cardiac rhythm and appreciate the consequences of impaired blood supply (ischaemia).
- Discuss the mechanisms and importance of receptor-operated Ca²⁺ increases in blood cells such as platelets and lymphocytes.
- Critique scientific information from a range of sources including the interpretation of data. Communicate biological information by writing and by means of tables, diagrams, drawings and graphs.

Teaching and Learning Methods

- Asynchronous: presentations and associated material
- Synchronous: presentation support, computer simulation work-sessions, tutorials with problem solving worksheets.

Assessment Methods

Combines essay with computer generated data
End of module assessment

Pre-Requisites

BS2013

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

- Sourcing, reading and interpreting literature relevant to the combined essay.
- Analysing, interpreting and presenting data obtained from running the ionic current simulation programme.
- Interpreting the literature sources and simulated data to write the combined essay.
- Preparing for the tutorials using pre-circulated tutorial questions.
- Reviewing presentation topics and reading literature relevant to these topics to gain further insight into the module content.
- Participate in a formative data-handling exercise aimed at improving understanding of key concepts.
Module Specification

BS3064 Comparative Neurobiology

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>8.5</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>2</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>7</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>3.5</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>46.5</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>7.5</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>75</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: Tom Matheson
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Practical report</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of Module Assessment</td>
<td>65</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Engagement (tutorial participation)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E1
Coordinator: Tom Matheson
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Practical report</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of Module Assessment</td>
<td>65</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Engagement (tutorial participation)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:

Use evidence from different animal groups to demonstrate knowledge and understanding of the principles of operation of sensory-motor integration leading to the generation of behaviour.
Synthesize raw data and published information to demonstrate understanding of energy storage mechanisms involved in insect jumping

Teaching and Learning Methods

- Asynchronous mini-lectures supported by asynchronous pre-lecture and post-lecture material.
- Asynchronous practical exercise supported by asynchronous pre-practical and post-practical material.
- Asynchronous interactive quizzes and self-learning exercises.
- Synchronous online interactive review sessions (face-to-face if possible)
- Synchronous online small group and whole-class tutorials (face-to-face if possible)
- Face-to-face laboratory practical work (if possible)
- Guided study.
- Online Group work.
- Synchronous and asynchronous online Instructor feedback.

Assessment Methods

Practical report, end of module open book assessment

Pre-Requisites

BS2014 OR BS2066 OR BS2077

Co-Requisites

Excluded Combinations

Last Published: 8 November 2021
Module Specification

BS3064 Comparative Neurobiology

Guided Independent Study: Indicative Activities

• Preparing for the practical by engaging with the supporting material and reading related research papers.
• If face-to-face teaching possible, carrying out laboratory practical to measure power output of locust leg muscle.
• Carrying out in-depth analyses of two large datasets of practical results. Interpreting the data and relating them to the relevant literature.
• Reading primary research literature and textbooks to support the framework provided in the course material.
• Preparing for tutorials by searching for and reading relevant research literature, and writing essay outlines based on this.
• Following up on tutorials by working online in groups to develop material from the sessions into a structured essay outline on the allocated topics.
• Revising lecture notes, online course materials, material from the reading lists and material found independently to prepare for the online final assessment.
• Preparing for revision tutorial.
BS3068 Microbial Biotechnology

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurrence: E
Coordinator: Primrose Freestone
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>8</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>20</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>12</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>97</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

- Understand the commercial processes involved in development of microbial products.
- Describe the central theories and concepts of selected aspects of microbial biotechnology.
- Demonstrate an awareness of the importance of microbial biochemistry to industrial microbiological processes.
- Develop a reflective appreciation of the safety, social and ethical issues surrounding uses of micro-organisms in biotechnology.
- Communicate their knowledge of microbial biotechnology via poster and group presentations.

Teaching and Learning Methods

Lectures, tutorials, mini-conference assessment.

Assessment Methods

Poster plus abstract
Enterprise assessment

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Guided reading of current research papers, reviewing lectures, preparing poster and abstract, reflecting on field trip, revising for the end of module exam.

Last Published: 8 November 2021
Module Specification

Module: Structural Biology

BS3070

Academic Year: 2021/2

Module Level: Year 3

Scheme: UG

Department: Biological Sciences

Credits: 15

Period: Semester 1

Occurrence: E

Coordinator: Peter Moody

Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td>12</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>113</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Period:

Semester 1

Occurrence:

E1

Coordinator:

Peter Moody

Mark Scheme:

UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Evaluate research literature where structural biology techniques have been used
- Discuss the basis, properties and applications of important biophysical techniques.
- Explain the basis and approaches of protein crystallography.
- Explain the basis and approaches of protein nuclear magnetic resonance.
- Explain the basis and approaches of Cryo Electron Microscopy.
- Discuss the scope and contribution of protein bioinformatics as a computational method.

Teaching and Learning Methods

Lectures and computer based workshops.

Assessment Methods

- Examination (final)
- Data analysis workshop
- NMR workshop

Pre-Requisites

-

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

Each topic has a reading list given to the students, with the expectation of viewing prior to lecture. The lectures are recorded using Reflect and made available to students for the whole year. Preparation for workshops, including analysis of data

Last Published: 8 November 2021
Module Specification

BS3073 Conservation and Ecological Genetics

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Practical report (written as research paper)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>End of Module Assessment</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

- Synchronous Lectures 10
- Synchronous Small Group Teaching 10
- Synchronous Practical Classes/Workshops/Professional Placements 6
- Synchronous Other 10
- Asynchronous Lectures/Presentations 6
- Asynchronous Other 6
- Guided Independent Study 108

Total Module Hours: 150

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Describe the various types of molecular marker and their properties
- With a knowledge of underlying theory, describe and explain how molecular markers can be used to understand aspects of behaviour, ecology and evolution
- Apply their knowledge of molecular markers to conservation and environmental issues.

Teaching and Learning Methods

- Lectures/online lectures, Tutorials/online tutorials (discussions of primary research papers), analysis workshops, drop-in help sessions, formative quizzes/tests, guided reading, independent reading.

Assessment Methods

- Practical report (written as research paper)
- End of module assessment (24 hour completion window)

Pre-Requisites

Co-Requisites

Excluded Combinations

-

Guided Independent Study: Indicative Activities

Directed reading, with particular emphasis on the primary literature

Last Published: 8 November 2021
Module Specification

BS3901 Research Project

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 120

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Module Hours: 1200

Intended Learning Outcomes

On completion of the project, students are expected to be able to:- test a hypothesis by appropriate experimental or computer-based techniques; conduct experimental procedures and demonstrate good laboratory or bioinformatics practice; analyse and present experimental or bioinformatics data; locate appropriate literature sources and interpret their findings in relation to other work in their subject area; discuss the project report and be aware of its wider context; produce a well written and presented dissertation that complies with the guidelines for presentation of the project.

Teaching and Learning Methods

Directed reading, Project supervision, Independent research.

Assessment Methods

Assessment of performance, individual research projects, dissertation.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Period: Academic Year
Occurrence: E1
Coordinator: Noel Davies
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Laboratory Performance</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Report</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Academic Year
Occurrence: E2
Coordinator: Noel Davies
Mark Scheme: UG Module Grade Only

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Laboratory Performance</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BS3902 Research Project

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 60

Period: Semester 1
Occurrence: E1
Coordinator: Noel Davies
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Laboratory Performance</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E2
Coordinator: Noel Davies
Mark Scheme: UG Module Grade Only

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Laboratory Performance</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E1
Coordinator: Noel Davies
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Laboratory Performance</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes
On completion of the project, students are expected to be able to:- test a hypothesis by appropriate experimental or computer-based techniques; conduct experimental procedures and demonstrate good laboratory or bioinformatics practice; analyse and present experimental or bioinformatics data; locate appropriate literature sources and interpret their findings in relation to other work in their subject area; discuss the project report and be aware of its wider context; present the key findings in the form of an oral presentation; produce a well written and presented dissertation that complies with the guidelines for presentation of the project.

Teaching and Learning Methods
Directed reading, Project supervision, Independent research
BS3902 Research Project

Assessment Methods
Oral presentation, assessment of performance, individual research projects, dissertation.

PLEASE NOTE: Applicants may only apply for this project if they can submit a letter of confirmation from an academic who has agreed to supervise their project.

Your home university will be asked to confirm whether you should be assessed by Assessment Group E1 or E2. E2 is based upon the assumption that the overall grading for your period of study will be determined via your report to your home university.

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Module Specification

MB1080 Introduction to Medical Bioscience

Academic Year: 2021/2
Module Level: Year 1
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Chris Willmott
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes
On completion of the module, students should be able to:
- Describe the molecular basis of atherosclerosis
- Discuss the importance of genomics to cancer diagnosis and prognosis
- Describe the role of the microbiome in disease
- Demonstrate awareness of the key features of an accessible written explanation of a recent scientific development
- Carry out basic numerical manipulations of scientific measurements, and critically analyse experimental data
- Prepare effective visual aids (e.g. PowerPoint slides), accompanied by narration

Teaching and Learning Methods
Asynchronous lecture recordings, demonstration of calculations (online), synchronous online lectures, synchronous online tutorials

Assessment Methods
- Lay explanation of scientific issue: 30%
- Narrated PowerPoint presentation: 30%
- Data-handling and Scientific Report: 40% (3 x Online test on statistical understanding @ 5%; 1 x Written report @ 25%)

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Recommended reading (for essay).
Independent research (for oral presentation).
Practice activities (for data handling task).
Additional reading and recommended audiovisual resources (viewing list).

Student Workload (hours)

Synchronous Lectures	16
Synchronous Small Group Teaching	2
Synchronous Practical Classes/Workshops/Professional Placements	9
Synchronous Other	
Asynchronous Lectures/Presentations	
Asynchronous Other	
Guided Independent Study	105
Total Module Hours	150

Last Published: 8 November 2021
Module Specification

MB2020 Medical Microbiology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 1
Occurence: E
Coordinator: Galina Mukamolova
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>11</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>4</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>14</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>110</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

At the completion of the course students are expected to be able to:
- Describe the basic principles of microbiology and microbial diagnostics;
- Know the characteristics of major human pathogens and explain how they adapt to different environments;
- Describe major infectious diseases and name corresponding causative agents;
- Know major antimicrobials used for treatment of infectious diseases and explain how they work;
- Explain major areas of preventive treatment;
- Conduct simple experiments for identification and characterisation of medically important bacteria.
- Demonstrate competency in oral and written communications, information sourcing, handling and referencing, numeracy, data analysis, basic statistical skills, problem solving, and group working.
- Demonstrate awareness of health sustainability.

Teaching and Learning Methods

Lectures, tutorials, practical classes, workshops, problem solving classes, live weekly clinic sessions.

Assessment Methods

- Practical booklet: 40%
- Two-hour open book on-line assessment within a 24-hour window: 60%

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Reading, reviewing lectures, preparing workbook, presentation and revising for exam.

Last Published: 8 November 2021
Module Specification

MB2050 Applications of Medical Biochemistry

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>4</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>20</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>106</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

No.	**Assessment Description**	**Weight %**	**Qual Mark**	**Exam Hours**	**Ass't Group**	**Alt Reass't**
001 | Resource Review 1 | 10 | |
002 | Resource Review 2 | 10 | |
003 | Resource Review 3 | 10 | |
004 | Resource Review 4 | 10 | |
005 | Bioethics Video | 30 | |
006 | Graphical Abstract | 30 | |

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Outline selected techniques used in diagnosis and treatment of human disease.
- Give an overview of the process involved in the generation of a pharmaceutical product.
- Discuss molecular aspects of drug design and therapeutic protein production.
- Consider the potential impact of genomics on the diagnosis and treatment of disease.
- Discuss key social and ethical issues related to current development in biomedicine.
- Work as a team to design and produce a video to discuss a specific bioethical issue.
- Critically review the information available on a specific area of biology/medicine and summarise current knowledge in a written report.

Teaching and Learning Methods

Online lecture recordings and recommended reading, synchronous online tutorials, computer-based sessions (on campus if regulations permit), team-based working, examples of previous student work provided.

Assessment Methods

- x4 Resource Reviews (10% each)
- Report to Government: 30%
- Exam (1.25 hours): 30%

Pre-Requisites

Indicative Activities

- Independent research on science and ethics
- Reading research articles written by Leicester staff (provided)
- Recommended online resources, including recordings made locally using Reflect lecture capture system and other tools.

Co-Requisites

- Guided Independent Study: Indicative Activities

 - Independent research on science and ethics (for video)
 - Research on novel therapeutic agent (for written report), starting with initial provided source.
 - Recommended online resources regarding video production;
 - other audiovisual resources.

 Recorded lectures made available for review using Reflect lecture capture system.

Last Published: 8 November 2021
Module Specification

MB2051 Current Issues in Medical Genetics

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Intended Learning Outcomes
On completion of the module a typical student should be able to:
• Explain the scientific basis of current controversies in medical genetics.
• Evaluate the arguments on both sides of an ethical topic
• Outline the procedures in place for the establishment of laws and guidelines governing one of the areas listed above.
• Work as part of a team to produce a variety of presentations.

Teaching and Learning Methods
Seminars with mixture of tutor and student led discussions.
Feedback from assessment

Assessment Methods
- Website: 35%
- Dissertation (5,000 words): 65%

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
- Preparation for seminars
- Reading references from seminars
- Preparation for ethical matrix
- Team co-ordination and preparation of website
- Researching and writing the dissertation

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Guided Independent Study 66

Total Module Hours 150

Period: Semester 1
Occurrence: E
Coordinator: Christopher Talbot
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>006</td>
<td>Website</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Dissertation (5000 words) (final)</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Last Published: 8 November 2021
Module Specification

MB2080 Pathophysiology of Disease

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Jonathon Willets
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Essay</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Modules Assessment (open book)</td>
<td>60</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

- Synchronous Lectures
- Synchronous Small Group Teaching 2
- Synchronous Practical Classes/Workshops/Professional Placements 7
- Synchronous Other 2
- Asynchronous Lectures/Presentations 21
- Asynchronous Other 2
- Guided Independent Study 116
- Total Module Hours 150

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Discuss the underlying physiological and biochemical mechanisms and disease-induced changes associated with a range of human conditions
- Outline the symptoms, prevalence, morbidity, mortality, and risk factors associated with the range of human disease states covered.
- Make effective use of electronic sources of information, including the PUBMED and OMIM databases and disease specific web sites, to find out detailed information about the physiology, aetiology and epidemiology of a particular disease.
- Critically evaluate the use of laboratory data in the identification, aetiology and pathogenesis of selected diseases processes.

Teaching and Learning Methods

Lectures, tutorials with problem-solving worksheets, laboratory practical class, work session, directed reading, study support session(s).

Assessment Methods

Coursework essay, computer-based multiple choice test and examination (final).

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Read a variety of relevant source material including textbooks and scientific articles. Specific reading tasks will be posted as part of the course material and on Blackboard.
Complete the work session to become proficient in the use of online literature resources and thus effectively find background material to support writing of course work early.
Revise module content guided by module activities as well as external sources
Prepare and revise material covered in tutorials
Prepare for practical sessions assisted by module activities.

Last Published: 8 November 2021
Module Specification

MB3001 Biochemical Mechanisms of Human Disease

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Russell Wallis
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

Synchronous Lectures	21
Synchronous Small Group Teaching	
Synchronous Practical Classes/Workshops/Professional Placements	
Synchronous Other	
Asynchronous Lectures/Presentations	
Asynchronous Other	
Guided Independent Study	126

Total Module Hours: 150

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Summarise the biochemical evidence and current theories about normal and pathological ageing.
- Describe the genetic basis of laminopathies and explain how different mutations can result in different disease phenotypes by altering different properties and functions of the nuclear envelope.
- Explain the molecular basis of complement activation and its role in disease.
- Summarise the factors that are involved in the development of inflammation and asthma.
- Critically evaluate scientific papers.

Teaching and Learning Methods

Lectures, Tutorials, Guided reading, Independent research.

Assessment Methods

- Examination (final)
- Coursework – literature analysis

Pre-Requisites

-

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

Guided reading associated with lectures
Directed critical analysis of recent scientific paper(s) on topic associated with the lectures

Last Published: 8 November 2021
Module Specification

MB3020 Advanced Topics in Medical Microbiology

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurence: E
Coordinator: Edouard Galyov
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Case Presentation</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of module assessment (Final)</td>
<td>70</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)
- Synchronous Lectures: 3
- Synchronous Small Group Teaching: 4
- Synchronous Practical Classes/Workshops/Professional Placements
- Synchronous Other
- Asynchronous Lectures/Presentations: 20
- Asynchronous Other: 3
- Guided Independent Study: 120
- Total Module Hours: 150

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Critically assess current views on the molecular mechanisms underlying bacterial virulence, drawing on evidence from the studies of host-pathogen interactions, immune responses, and lessons from history.
- Describe the key virulence factors and systems of major bacterial pathogens, and mechanisms of their acquisition and exchange.
- Define host responses to bacterial infections and approaches used to diagnose bacterial infections and to create effective vaccines; to demonstrate awareness how these approaches contribute to sustainable health care.
- Have gained, in the context of the above areas of microbiology, experience of accessing information from the scientific literature in electronic and written form, to be able to perform analysis of a hypothetical clinical case and to provide an overview of microbial pathogenicity through an oral presentation.

Teaching and Learning Methods
Lectures, seminars, tutorials, directed reading

Assessment Methods
Case presentation
Examination (final)

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Reading recent research papers and review articles; assessing relevant on line education materials, self-testing, reviewing lectures, preparing clinical case presentation seminar, revising for examination.

Last Published: 8 November 2021
Module Specification

MB3050 Medical Genetics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Christopher Talbot
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)
- Synchronous Lectures
- Synchronous Small Group Teaching 3
- Synchronous Practical Classes/Workshops/Professional Placements 1
- Synchronous Other 11
- Asynchronous Lectures/Presentations 13
- Asynchronous Other
- Guided Independent Study 122
- Total Module Hours 150

Intended Learning Outcomes
On successful completion of the module, students should be able to:
- Assess how genetics has impacted upon the practice of medicine
- Outline the problems and advances in using genetics to understand complex diseases
- Demonstrate a knowledge of the contribution of genetics to the study of various diseases, eg neurological, cardiovascular and cancer.
- Appraise a current research paper and give an oral presentation on it.

Teaching and Learning Methods
Lectures, Tutorials, Seminars, Tutor and peer-reviewed presentations, essay and feedback, pre-exam clinic, exam

Assessment Methods
End of Module Assessment (open book)
Presentation

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for lectures
Reviewing lecture presentations
Reading references from lectures
Researching, preparing and practicing the presentation
Module Specification

MB3057 Current and Future Therapeutics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Martine Hamann
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Data handling, analysis and interpretation</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>News & views article</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Essay (1500 words)</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Lectures</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synchronous Small Group Teaching</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Asynchronous Lectures/Presentations</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guided Independent Study</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Appraise the underlying pathophysiology of a range of human diseases.
- Appraise current treatment strategies for a range of human diseases, showing a knowledge of inadequacies and unmet clinical need.
- Using specific examples, appraise current research aims, models and methods designed to facilitate the understanding, diagnosis or treatment of disease.
- Use a range of transferable skills that may include written communication, information technology, numeracy, team working, problem solving, information handling.

Teaching and Learning Methods

Lectures, tutorials, directed reading

Assessment Methods

Data handling, analysis and interpretation
News and Views article
Essay (1500 words)
Guided Independent Study

Pre-Requisites

BS2013 or BS2014 or BS2015

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Working through provided material and directed tasks before and after lectures. Gathering of information to extend knowledge beyond the provided and directed reading. Revision and work towards in-course assessments.
Module Specification

NT2001 Astrophysics, Astrochemistry and Astrobiology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework D01: Academic poster and presentation</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Coursework D02: White paper</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: Cheryl Hurkett
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework (Final)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes
On completion of the module, students should be able to:
- Discuss how the observable parameters of stars are measured; relate this to their formation and evolution along the Main Sequence.
- Describe the formation of the solar system and show how newly discovered planetary systems compare in terms of: system formation; planetary composition/structure; geological processes; stellar-planetary interactions.
- Explain the range of observing techniques that are currently being used to detect planets around other stars, and recall and apply Kepler's Laws to a variety of planetary systems.
- Describe what is currently understood about the chemical conditions under which life began on Earth, the processes that were required in order to produce the first life forms and how early life developed from unicellular to multi-cellular.
- Discuss how all of the above are related to the creation of suitable conditions for life and evolution of life on Earth and extrapolate these principles to exoplanets.
- Apply subject knowledge to address research problem/question.

Teaching and Learning Methods
Problem-based learning
Lectures
Workshops
Group work
Tutorials
Coursework: Group and individual

Assessment Methods
Coursework: Group and Individual

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for workshops (including reading, videos, online activities)
Short Answer exercise sets

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>Synchronous Small Group Teaching</th>
<th>Synchronous Practical Classes/Workshops/Professional Placements</th>
<th>Synchronous Other</th>
<th>Asynchronous Lectures/Presentations</th>
<th>Asynchronous Other</th>
<th>Guided Independent Study</th>
<th>Total Module Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Last Published: 8 November 2021
Module Specification

NT2002 Evolution

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 15

Student Workload (hours)

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td></td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>7</td>
</tr>
<tr>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>8</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>119</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>150</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E
Coordinator: Sarah Gretton
Mark Scheme: UG Module Mark Scheme

Assessment Methods

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Textbook Chapter</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Audio Recording</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework (Final)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guided Independent Study: Indicative Activities

Preparation for seminars (including reading, videos, multiple choice questions)
Short Answer exercise sets

Last Published: 8 November 2021
NT2003 Laboratory, Mathematical and Scientific Skills II

Student Workload (hours)

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>D01 Application Questions: Submission of short and long answer question set</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>D02 End of Module Assessment: 24 hour open book assessment</td>
<td>16</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Python code portfolio</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Interdisciplinary science lab report</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Personal development portfolio (final)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- [Maths] Carry out basic matrix manipulations including transpose, determinants and inverse.
- [Maths] Carry out basic algebraic calculations with complex numbers and represent them using exponential and De Moivre's theorem. Find the Fourier Series of a function.
- [Skill] Reflect on and articulate motivations, strengths and skills in relation to a future, work-related learning opportunity (e.g. placement, internship, employer-led project).
- [Laboratory] Demonstrate advanced analysis techniques on data collected from experiments and present this analysis in an appropriate format in written reports (e.g. graphically, qualitatively, quantitatively)
- [Laboratory] Reflect upon and apply core scientific knowledge from other modules within an experimental context
- [Laboratory] Detail experimental accounts with sufficient clarity and completeness that the report would enable other experimentalists to reproduce the experiment. Formulate experimental plans for testing models and hypotheses by experimental means
- Analyse Python code: predict what a section of Python code computes when executed.
- Compare Python code written by different individuals to implement a given task.
- Implement a given task in Python code writing in VS Code and Jupyter Notebooks.
- Construct Python programs that can be executed by other users.
- Handle Python debugging in order to test Python code and correct errors during code development.
- Operate Python code for plotting, data analysis and modelling

Teaching and Learning Methods

- [Maths] Seminars
- [Maths] Coursework: Short answer sets
- [Maths] 24 hours open book assessment
- [Skills] Workshop sessions: The module will provide explicit guidance on how to relate strengths, transferable skills and motivations to a professional opportunity, how to evaluate results from a psychometric test, and how to produce a tailored application (e.g. tailored CV and cover letter). This will be delivered through a combination of course materials and appropriately contextualised instruction.
- [Laboratory] Laboratory Practical sessions
- [Laboratory] Coursework: Experimental Summary and Formal Laboratory Reports
- Lectures implementing ignite principles

Assessment Methods

D01 Application Questions: Submission of short and long answer question set
D02 End of Module Assessment: 24 hour open book assessment
Python computing coursework 25%
Interdisciplinary Laboratories coursework 25%
Personal development portfolio (10%)

Pre-Requisites

Last Published: 8 November 2021
Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

[Maths] Preparation for workshops (including reading, short answer exercise sets)
[Maths] Short Answer exercise sets
[Skills] On-line materials to support completion of Leicester Award Gold qualifying activities. Workshops on exploring career options and application and selection processes
[Laboratory] Multiple Choice Question sets (Pre-Laboratory Questions)
[Laboratory] Preparatory reading for experiment
[Laboratory] Additional analysis required for Experimental Summaries
[Laboratory] Short Answer exercise sets that support data analysis skills
Module Specification

NT2004 The Molecules of Life - An Introduction to Biochemistry and Molecular Biology

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 1
Occurrence: E
Coordinator: Sarah Gretton
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lab Practical Report 1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Lab Practical Report 2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Essay</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>End of Module Assessment (open book)</td>
<td>40</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Interdisciplinary Assessment</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Continuous Assessment</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E1
Coordinator: Sarah Gretton
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework - Interdisciplinary (Final)</td>
<td>100</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On completion of the module, students should be able to:
- Explain the basic chemical principles that underpin biochemistry.
- Describe the structures of biological macromolecules and their components.
- Explain the basic mechanisms of DNA replication, transcription and translation.
- Discuss concepts of gene expression and control in prokaryotes and eukaryotes.
- Discuss the relationship between protein structure and function.
- Outline the key metabolic processes in cells and identify important mechanisms of metabolic regulation.
- Demonstrate an ability to analyse experimental data.
- Use scientific literature to produce written reports.
- Determine kinetic parameters of an enzyme catalysed processes in terms of Michaelis Menten theory.

Teaching and Learning Methods

Research-based learning
Lectures,
Laboratory practical sessions,
Review sessions and group work,
Small group tutorials
Revision sessions.

Assessment Methods

Practical report, essay, end of module assessment, engagement mark.

Pre-Requisites

Co-Requisites

Excluded Combinations

Last Published: 8 November 2021
Guided Independent Study: Indicative Activities
Preparation of laboratory reports, completion of pre-lab tests, reading practical books in preparation for laboratory classes, researching and evaluating scientific literature, preparation of formative talks/presentations for small-group tutorials, problem-solving in support of small group tutorials, guided reading to support module material, Preparation for tutorials (including reading, videos)
Module Specification

NT2005 Physiology, Pharmacology and Neuroscience

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 2
Occurrence: E
Coordinator: Katherine Clark
Mark Scheme: UG Module Mark Scheme

No. Assessment Description Weight % Qual Mark Exam Hours As't Group Alt Reass't
001 Test 1 24
002 Test 2 24
003 Lab Practical Report 24
004 Coursework - Interdisciplinary 20 40
005 Coursework - Interdisciplinary 45 40
006 Engagement 8

Student Workload (hours)
Synchronous Lectures
Synchronous Small Group Teaching 9
Synchronous Practical Classes/Workshops/Professional Placements 2
Synchronous Other 12
Asynchronous Lectures/Presentations 30
Asynchronous Other 100
Guided Independent Study 147
Total Module Hours 300

Period: Semester 2
Occurrence: E1
Coordinator: Katherine Clark
Mark Scheme: UG Module Mark Scheme

No. Assessment Description Weight % Qual Mark Exam Hours As't Group Alt Reass't
001 Test 1 15
002 Test 2 15
003 Report 25
004 Coursework - Interdisciplinary 45 40

Intended Learning Outcomes
On successful completion of the module, students should be able to:
Describe general aspects of the organisation, function and operating principles of the main physiological systems in the human body.
Apply basic concepts of pharmacology to classes of cell surface receptors for neurotransmitter, hormones and local mediators.
Describe the properties of cell surface receptors, their functions and relevant signalling pathways.
Explain how individual physiological systems work together to achieve whole body homeostasis.
Demonstrate understanding of human physiological measurement.
Handle, manipulate, display and statistically analyse physiological data.
Describe the basic quantitative methods of spike train analysis, and to be able to implement them in a high level programming language (e.g. Python)

Teaching and Learning Methods
Research-based learning
Lectures, practical classes, tutorials

Assessment Methods
Tests
Report
Coursework - Interdisciplinary
Engagement

Pre-Requisites
Co-Requisites

Last Published: 8 November 2021
Excluded Combinations

Guided Independent Study: Indicative Activities

- Read a variety of relevant source material including textbooks and scientific articles. Specific reading tasks will be posted as part of the course material and on Blackboard.
- Prepare report including data handling.
- Revise module content guided by module activities as well as external sources.
- Prepare and revise material covered in tutorials.
- Prepare for practical sessions assisted by module activities.
- Complete formative online tests to check understanding of material and prepare for summative online test
NT2006 Genetics, Biodiversity and Behaviour

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 2
Occurrence: E
Coordinator: Moya Burns
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe and discuss:
 - Phylogeny and the tree of life
 - Basic animal and plant development
 - Animal and plant origins and diversity
 - Biodiversity/ecology and its importance
 - Animal behavioural/physiological adaptations
 - Use appropriate statistical analysis software to analyse data
 - Use appropriate skills and software to assess and present research
 - Explain how chromosomes are inherited through mitosis and meiosis and how genetic variation is generated.
 - Perform elementary genetic analyses.
 - Perform elementary statistical analyses.
 - Recognise genetic diseases and genetically influenced disorders and appropriate methods of screening.
 - Explain genetic variation and methods to measure it.
 - Explain what factors influence global patterns of genetic diversity.
 - Describe basic elements of molecular evolution of genes and genomes
 - Define DNA sequencing technologies and their use in modern genetics
 - Identify simple bioinformatics tools
 - Demonstrate competent skills in data analysis and in the preparation and presentation of written work
 - Apply the Hardy-Weinberg principle to determine whether a population is evolving.

Student Workload (hours)

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>1</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>10</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>24</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>34</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>40</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>6</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>185</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E1
Coordinator: Moya Burns
Mark Scheme: UG Module Mark Scheme

Assessment Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>End of Module Assessment - Biodiversity and Behaviour (Final)</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment - Open Book (Genetics)</td>
<td>26</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Statistics 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Statistics 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Statistics 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Blackboard Test - Genetics</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Presentation - Biodiversity and Behaviour</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Continuous Assessment - Genetics</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>Engagement - Biodiversity and Behaviour</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 2
Occurrence: E1
Coordinator: Moya Burns
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Statistics - Biodiversity and Behaviour</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Blackboard Test - Genetics</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Presentation - Biodiversity and Behaviour</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Engagement - Biodiversity and Behaviour</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Engagement - Genetics</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NT2006 Genetics, Biodiversity and Behaviour

Teaching and Learning Methods
Research-based learning
A combination of synchronous and asynchronous delivery methods including slides, presentations, exploration of scientific topics, general summaries, tutor-led sessions, statistical/experimental/data analyses

Assessment Methods
Coursework assessment, engagement and end of module assessments
Coursework (Interdisciplinary)
Students earn Genetics engagement marks by submitting 5 out of 6 formative assessments (or 80% of the due number if they have mitigating circumstances)

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for tutorials (including reading, videos)
Preparing for and revising all synchronous and asynchronous material delivered through the module. Consulting textbooks/papers. Preparing for and producing coursework. Preparing for the final end of module assessments.
Module Specification

NT2007 Introductory Analytical and Physical Chemistry

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Academic Year
Occurrence: E
Coordinator: Pietro Roversi
Mark Scheme: UG Module Mark Scheme

No. Assessment Description Weight % Qual Mark Exam Hours Ass't Group Alt Reass't
001 Exam - Physical Chemistry (Final) 30 2
002 Coursework - Analytical 10
003 Coursework - Physical Chemistry 10
004 Coursework - Interdisciplinary 20 40
005 Exam - Analytical 30 1.5

Period: Academic Year
Occurrence: E1
Coordinator: Pietro Roversi
Mark Scheme: UG Module Mark Scheme

No. Assessment Description Weight % Qual Mark Exam Hours Ass't Group Alt Reass't
001 Coursework - Analytical 25
002 Coursework - Physical Chemistry 25
003 Coursework - Interdisciplinary 50 40

Intended Learning Outcomes

On successful completion of the module, students should be able to: Discuss the role of ethics in the pursuit of scientific discovery and be familiar with some of the underlying philosophical principles of science. Coursework (Analytical) Describe the different types of analytical problems, the methods that can be used to solve them and the errors associated with each method and how they can be dealt with; use this knowledge to select the best technique to solve specific analytical problems. Coursework (Analytical) Know the basic principles of electrochemical, chromatographic and UV/Vis and elemental spectroscopic techniques and discuss and evaluate their application in qualitative and quantitative analyses. Coursework (Analytical) Know the principles and underlying chemistry of titrimetric and gravimetric quantitative methods of analysis. Coursework (Analytical) Evaluate and interpret the results from qualitative and quantitative analyses and solve problems involving analytical data. Coursework (Analytical) Describe and explain the properties of ideal and non-ideal gases. Coursework, Exam (Physical Chemistry) Describe the use of virial coefficients, Maxwell distributions and collision rates. Know the basic principles of reaction kinetics and how they can be measured; use these principles to calculate the effect of various parameters on the rates of chemical reactions. Perform qualitative and quantitative analyses of and solve problems involving thermodynamic and kinetic data. Apply the principles of core analytical and physical chemistry to interdisciplinary contexts (e.g. the role of thermodynamics and kinetics in metabolic pathways).

Teaching and Learning Methods

Research-based learning. Lectures, example problems, tutorials, marked work, group problem solving classes & VLE directed activities

Assessment Methods

Coursework (Analytical) Coursework (Physical Chemistry) Coursework (Interdisciplinary)

Pre-Requisites

-

Co-Requisites

-
Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for tutorials (including reading, videos), directed reading, set problems, group problem solving exercises, formative quizzes
Module Specification

NT2008 Introductory Organic and Inorganic Chemistry

Academic Year: 2021/2

Module Level: Year 2

Scheme: UG

Department: Biological Sciences

Credits: 30

Period: Academic Year

Occurrence: E

Coordinator: Pietro Roversi

Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Exam - Organic Chemistry (Final)</td>
<td>30</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Exam - Inorganic Chemistry</td>
<td>30</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Coursework - Organic Chemistry</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Coursework - Inorganic Chemistry</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours):

- **Synchronous Lectures:** 64
- **Synchronous Small Group Teaching:**
- **Synchronous Practical Classes/Workshops/Professional Placements:** 10
- **Synchronous Other:**
- **Asynchronous Lectures/Presentations:**
- **Asynchronous Other:**
- **Guided Independent Study:** 214
- **Total Module Hours:** 300

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Recognise functional groups, anticipate their reactivity and interconversions and the reagents required for these transformations.
- Identify and explain the relationships between isomers and conformers of organic molecules.
- Rationalise and predict reactivity based on curly arrow mechanisms and diagrams; explain how structure and bonding controls the outcome and rate of organic reactions.
- Interpret and discuss the differences between a variety of reaction mechanisms including nucleophilic substitution, elimination reactions, reactions of alkenes, reactions of carbonyls and electrophilic aromatic substitution.
- Predict and interpret spectroscopic data for organic molecules whose structures are known; deduce structures of molecules using spectroscopic and analytical data.
- Calculate oxidation states and d\n configurations for transition metal complexes and identify the common types of ligand and methods of complex preparation.
- Describe bonding in transition metal complexes using ionic (crystal field theory) and covalent (molecular orbital) models; calculate crystal field stabilisation energies and use these to explain and predict magnetic and spectroscopic properties of transition metal complexes.
- Predict the geometries of complexes, recognising rotational axes, mirror planes and centres of inversion and draw these on diagrams of molecules; use these to assign point groups to molecules and identify the possibility of distortions from ideal geometries and isomerism.
- Describe the inorganic chemistry of a range of main group compounds and discuss the broader applications of descriptive inorganic chemistry.
- Interpret solid state structures in terms of the type of unit cell adopted, the coordination number and coordination geometry of each atom, the radius ratio, and the relevant bonding models for ionic and metallic solids.
- Apply the principles of core organic and inorganic chemistry to interdisciplinary contexts (e.g. the role of organic chemistry in drug synthesis and the role of solid-state chemistry in rationalising the bulk properties of materials).

Teaching and Learning Methods

Research-based learning, Lectures, example problems, tutorials, marked work, group problem solving classes & VLE directed activities

Assessment Methods

Coursework (Organic Chemistry, Inorganic Chemistry) Coursework (Interdisciplinary)

Pre-Requisites

-

Last Published: 8 November 2021
Module Specification

NT2008 Introductory Organic and Inorganic Chemistry

Co-Requisites

-

Excluded Combinations

-

Guided Independent Study: Indicative Activities

Preparation for tutorials (including reading, videos), directed reading, set problems, group problem solving exercises, formative quizzes

Last Published: 8 November 2021
Module Specification

NT2009 Mechanics, Electricity and Magnetism

Academic Year: 2021/2
Module Level: Year 2
Scheme: UG
Department: Biological Sciences
Credits: 30

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Exam - Mechanics (Final)</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Exam - Electricity & Magnetism (Final)</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Coursework - Mechanics</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Coursework - Electricity and Magnetism</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurrence: E
Coordinator: Cheryl Hurkett
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Workload Category</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>4</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>16</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>32</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>246</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On completion of the module, students should be able to:

- Be able to state mathematically the laws of classical dynamics, both linear and rotational.
- Understand the definitions and use of concepts such as energy, momentum and angular momentum.
- Be able to state the properties of linear elasticity (Hooke’s law, Young’s modulus).
- Be able to state the basic properties of fluids including Archimedes’ principle and Bernoulli’s theorem.
- Solve relevant problems at an appropriate level using these concepts.
- Be able to organise appropriate private study time, obtain new information from text books, communicate physics concepts and ideas to your peers and to staff.
- State mathematically the laws of electric and magnetic fields and the use of related quantities such as field strength, potential, energy, charge and current.
- Solve basic problems in electromagnetism, set out solutions to physics problems correctly and describe experiments and applications in clear, simple prose.
- Understand basic circuit theory involving resistors and capacitors and solve basic circuit problems.
- Apply scientific knowledge from ‘Mechanics’ and ‘Electricity and Magnetism’ to provide unique insight, or deeper analysis, of an interdisciplinary topic related to these concepts. For example construct and apply mathematical models to demonstrate how fluid flow equations or electrical field theory can be applied to a range of systems in nature.
- Conduct independent research of the literature in order to support such models/discussions.

Teaching and Learning Methods

Research-based learning
Tutorials
Lectures,
Real-time problem solving classes,
Assessed homework problems,
Discussions with peers and staff members,
Guided independent study

Assessment Methods

Coursework (Mechanics and Electricity and Magnetism)
Coursework (Interdisciplinary)

Last Published: 8 November 2021
NT2009 Mechanics, Electricity and Magnetism

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for tutorials (including reading, videos)
Working through the example problems, and practice problems.
Discuss problems and solutions with your peers,
Review other texts on the subject to find alternative strategies to problem solving and alternative descriptions of the material.
Intended Learning Outcomes

On successful completion of the module, students should be able to:
- Know the simple properties of matter, heat and light, the laws of thermodynamics and the basic laws which describe the behaviour of light.
- Know where the basic laws come from and how they are derived.
- Know the laws in mathematical form and define all the terms used.
- Be able to derive mathematical relationships which describe the properties and behaviour of heat and light.
- Be able to solve simple problems involving thermodynamics and optics.
- Be able to state the basic language and equations used to describe oscillations and oscillators; apply this knowledge to solve basic problems in simple harmonic motion, damped simple harmonic motion, forced oscillations and resonance.
- Be able to demonstrate the need for a quantum theory of matter, as evidenced by the photo-electric effect, UV catastrophe, Compton scattering and electron diffraction.
- Be able to demonstrate knowledge of the wave and particle natures of light and matter as described by De Broglie and Heisenberg, including the description of wave functions, expectation values and probability densities.
- Be able to state and apply the basic theory of the Bohr atom and quantized electron energy levels, in order to demonstrate the origin of spectral lines.
- Have gained experience in the use and organization of private study time including background reading, and the discussion of physical ideas and problems with your peers and staff.
- Connect scientific knowledge from ‘Light and Matter’ and ‘Waves and Quanta’ to provide unique insight, or deeper analysis, of an interdisciplinary topic related to these concepts. For example construct and apply mathematical models employing thermodynamical concepts and wave-particle theory to biochemical scenarios. Carry out independent research of the literature in order to support such models/discussions.
Module Specification

NT2010 Light and Matter, Waves and Quanta

Teaching and Learning Methods
Research-based learning
Tutorials
Lectures,
Real-time problem solving classes,
Assessed homework problems,
Discussions with peers and staff members,
Guided independent study

Assessment Methods
Coursework
Coursework (Interdisciplinary)

Pre-Requisites
Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for tutorials (including reading, videos)
Working through the example problems, and practice problems.
Discuss problems and solutions with your peers,
Review other texts on the subject to find alternative strategies to problem solving and alternative descriptions of the material.
Module Specification

NT3002 Molecular Analysis and Design

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Departmental Examination (Final)</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Departmental Examination (Final)</td>
<td>100</td>
<td>2</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)
- Synchronous Lectures: 10
- Synchronous Small Group Teaching: 10
- Synchronous Practical Classes/Workshops/Professional Placements: 2
- Asynchronous Lectures/Presentations: 130
- Asynchronous Other: 150
- Total Module Hours: 150

Intended Learning Outcomes

"On successful completion of the module, students should be able to:~- Describe the role of enzymes as biological catalysts in terms of enzyme substrate interaction and kinetic models, and describe a range of enzyme inhibition mechanisms. Analyse kinetic data to predict which mechanism applies in a given situation. ~- Determine the structure of biological molecules from evidence collected using a variety of different analytical approaches. ~- Recognise the modular nature of signalling proteins, and describe the components of a signalling system. ~- Discuss the following principles in electrical and biological signalling pathways: noise; channel capacity; sensitivity and selectivity; optimal coding. ~- Design a theoretical biological signalling circuit to sense a particular stimulus and produce a cellular response; discuss the ethical implications of the approach."

Teaching and Learning Methods
- Problem-based learning
- Lectures
- Group work
- Coursework: podcast (group)
- Data analysis examination

Assessment Methods

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

"Preparation for seminars (including reading, videos, multiple choice questions)"

Period: Semester 1
Occurence: E
Coordinator: Pietro Roversi
Mark Scheme: UG Module Mark Scheme

Credits: 15
Module Level: Year 3
Department: Biological Sciences
Scheme: UG
Academic Year: 2021/2
Department: Biological Sciences

Last Published: 8 November 2021
Module Specification

NT3003 Interdisciplinary Research Journal

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Cheryl Hurkett

Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

On successful completion of this module, students should be able to:

To engage with academic literature by preparing an assigned academic paper for presentation to peers. This presentation should: clearly highlight the importance of the research topic; the underlying theory and how this relates to modules already studied; the research methodology and analysis used; key conclusions.
Write short scientific papers, based on their synoptic knowledge of the course so far, using existing knowledge in novel situations for publication in an open access, online undergraduate journal.
Reviewing peers' papers and presenting their critique and decision regarding publication in a clear and concise manner so that their review is an effective resource for an editorial board.
Participate in editorial board duties (chairperson, note keeper and ordinary member) and make unbiased, critical decisions on which papers should be published in light of referee comments.
Reflect on scientific literature encountered and use this to inform their own writing style.
Plan their time effectively to meet the editorial board deadlines for this module in tandem with other module commitments.

Teaching and Learning Methods

Work environment (Project-based):
• The cohort will convene to form a research group supported by academics.
• Students will be supported to engage with recent scientific literature not previously encountered in other modules. Students will present these academic papers to their peers within a research seminar format and respond to questions posed by both peers and academics. Students will critique the scientific literature encountered and reflect upon how this can inform their own writing style. This activity aims to replicate the real experience of presenting new discoveries and scientific data within a research group environment, without having to conduct original research.
• Building upon the experiences of engaging with existing scientific literature students will be supported in generating their own short academic papers, either individually or in groups up to three in size. These papers should use existing scientific knowledge from other modules but applied to new contexts, including new mathematical models or calculations in support of the conclusions drawn. These papers will be submitted via an online journal portal of the type used by professional academic journals.
• Students will critically evaluate their peers' papers and write referee reports suggesting improvements where necessary and summarizing whether the paper should be accepted for publication.
• Students will participate in editorial board meetings and take responsibility for assigning referees to papers and deciding whether individual papers meet the publication standards of the journal according. Students will be expected to formulate a forward planning proposal to demonstrate how they will meet all of the commitments listed above. This activity aims to replicate the experience of the academic publishing process and will provide students with a starting portfolio of peer-reviewed work to showcase in their CV and future job applications.

Assessment Methods

(Research Seminar / coursework): Presentation of two papers from the recent scientific literature to our peers in research seminars; respond to questions from your peers and academics on these papers.
(Research Seminar / coursework): Write a reflective statement critiquing the style and content of the scientific literature encountered.
(Journal / coursework): Publication of short scientific papers in an online undergraduate journal.
(Journal / coursework): Writing referee reports on scientific papers submitted by peers.
(Journal / coursework): Writing a forward planning proposal for individual contributions to the undergraduate journal highlighting how you will complete these task in tandem with other modules. Identify good practice that will contribute to future project work and career goals.

Pre-Requisites

Student Workload (hours)

Synchronous Lectures 2
Synchronous Small Group Teaching
Synchronous Practical Classes/Workshops/Professional Placements 19
Synchronous Other
Asynchronous Lectures/Presentations
Asynchronous Other
Guided Independent Study 129
Total Module Hours 150

NT3003 Interdisciplinary Research Journal

Last Published: 8 November 2021
NT3003 Interdisciplinary Research Journal

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Preparation for workshops (including reading, videos)
Production of referee's reports and short scientific papers
Engage with the University Press Office if a student paper is selected for a Press release or is otherwise picked up by the wider media.
Module Specification

NT3004 Molecular Cell Biology and Genomes

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 1
Occurrence: E
Coordinator: Sarah Gretton
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weight</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Module Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>End of Module Assessment (Open Book) - Molecular Cell Biology</td>
<td>24</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Final)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment - Genomes</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Lab Practical Report - Molecular Cell Biology</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Lab Practical Report - Genomes</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Tutorial Test 1 - Molecular Cell Biology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Tutorial Test 2 - Molecular Cell Biology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>Tutorial Test 3 - Molecular Cell Biology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Engagement Marks - Genomes</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:
- describe how prokaryotic and eukaryotic genomes are organised
- discuss mechanisms operating to influence this organisation
- explain basic processes of genome maintenance
- analyse experimental data
- perform simple bioinformatic analyses
- propose experimental strategies to study and manipulate genomes
- Describe the principles and outline the steps involved in common cell biology techniques.
- Explain how membrane and secreted proteins are post-translationally processed and targeted to different subcellular and extracellular locations.
- Explain how signalling pathways integrate extracellular signals to allow the regulation of complex cellular processes such as metabolism and cell proliferation.
- Explain the respective roles of microtubules, actin and intermediate filaments in the maintenance of cell architecture and function.
- Describe the processes involved in mitotic cell division and eukaryotic cell cycle control.
- Develop a strategy to address a specific scientific hypothesis and be able to critically analyse the results of such experiments.

Teaching and Learning Methods

Asynchronous lectures; synchronous discussion groups, tutorials and clinics; laboratory and computer practical classes. Lecture activity sheets, weekly review sessions.

Assessment Methods

Practical analysis, End-of-Module Assessments, Engagement marks for Genomes associated with Practical, Tutorial and Lecture programme components (e.g. submission of answers to a variety of tasks to Bb, TopHat etc.). Tutorial multiple choice question tests, practical report, Coursework (interdisciplinary).

Pre-Requisites

NT2004, NT2005

Co-Requisites

Excluded Combinations

Last Published: 8 November 2021
Module Specification

NT3004 Molecular Cell Biology and Genomes

Guided Independent Study: Indicative Activities
Module Specification

NT3005 From Genes to Proteins and Bioinformatics

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 2
Occurrence: E
Coordinator: Sarah Gretton
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes
"On successful completion of the module, students should be able to:~- Use computer systems to access bioinformatic databases.~- Explain the use of computers in analysing genomic data.~- Describe how protein structures are determined and modelled.~- Compare DNA and protein sequences to analyse gene structure and function.~- Demonstrate competency in accessing information, organising references and writing and producing practical reports.~- Describe how information encoded in DNA is transcribed into RNA and how primary transcripts are processed to achieve their final, functional form.~- Demonstrate an appreciation of the principles of the genetic code and translation of genetic information from messenger RNA into protein.~- Carry out and interpret simple experiments illustrating aspects of the above.~- Explain the principles underpinning of the regulation of gene expression in prokaryotes and eukaryotes.~- Describe molecular mechanisms of DNA manipulation by specified enzyme(s).~- Develop transferable skills in writing and data analysis.~- Investigate biophysical approaches to research gene expression."

Teaching and Learning Methods
Lectures, interactive sessions, practicals, computer-based sessions, revision sessions. Video presentations, computer practical classes, tutorials with group-work tasks and discussion, engagement activities, directed study, guided independent study.

Assessment Methods
Pre-Requisites
"NT2004, NT2005"

Excluded Combinations

Guided Independent Study: Indicative Activities
Students will be directed to essential reading (textbooks; selected journal articles) and recommended reading (journal articles, books, webpages) to complement the video presentations and assist preparation for End-of-Module Assessment and Computer Practical reports. Preparation for computer practical, execution of practice computational analyses. Planning, drafting and preparation of Computer Practical reports. Problem solving in support of small-group tutorials. Engagement activities (online tests contribution). Revising for End-of-Module Assessment. Details of indicative activities subject to modification as required.
Guided reading, recommended audiovisual materials. Lectures made available for review using Reflect. Preparation for tutorials. Research for long-format writing task.
Module Specification

NT3006 Genomes, Global Change and Conservation

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 3</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>30</td>
</tr>
</tbody>
</table>

Period: Semester 1
Occurence: E
Coordinator: Moya Burns
Mark Scheme: UG Module Mark Scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>End of Module Assessment - Genomes (Final)</td>
<td>22</td>
<td>30</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>End of Module Assessment - Global Change Biology and Conservation</td>
<td>20</td>
<td>30</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Lab Practical Report - Genomes</td>
<td>14</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Field Report - Global Change Biology and Conservation</td>
<td>17</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Engagement - Genomes</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Engagement - Global Change Biology and Conservation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>15</td>
</tr>
<tr>
<td>Synchronous Practical Classes/ Workshops/Professional Placements</td>
<td>10</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td>19</td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td>37</td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td>16</td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>201</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

On successful completion of the module, students should be able to:

- Describe how prokaryotic and eukaryotic genomes are organised and discuss the mechanisms operating to influence this organisation.
- Explain basic processes of genome maintenance.
- Analyse experimental data.
- Propose experimental strategies to study and manipulate genomes.
- Explain the major threats to global and UK biodiversity, including habitat loss, invasive species, overexploitation and climate change.
- Explain the legal and administrative basis for biodiversity conservation in the UK and Europe at species and ecosystem level.
- Demonstrate, from both fieldwork and a review of the literature, how conservation management can ameliorate the threats to particular, important UK habitats.
- Evaluate the management of habitats and ecosystems in terms of the perceived benefits for named species.
- Explain the extinction risks faced by small, isolated and unconnected populations.
- Make a balanced assessment, based on both fieldwork and the literature, of the conflicts between conservation and competing land issues.
- Apply evolutionary/genetic algorithms to demonstrate the evolution is a generic process and applicable to a wide variety of disciplines.

Teaching and Learning Methods

Asynchronous lectures, synchronous discussion groups, tutorials and clinics, laboratory and computer practical classes. Online lectures (including guest lectures from industry), asynchronous online activities, tutorials and online interactive activities.

Assessment Methods

Practical analysis, end of module assessments. Engagement marks for genomes associated with practical, tutorial and lecture programme components (e.g. submission of answers to a variety of tasks to Blackboard, Top Hat, etc). Field course report, continuous participation assessment, coursework (interdisciplinary)

Pre-Requisites

NT2004, NT2006

Co-Requisites

Excluded Combinations

Last Published: 8 November 2021
Guided Independent Study: Indicative Activities
Module Specification

NT3009 Organic and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Academic Year:</th>
<th>2021/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Level:</td>
<td>Year 3</td>
</tr>
<tr>
<td>Scheme:</td>
<td>UG</td>
</tr>
<tr>
<td>Department:</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Credits:</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period:</th>
<th>Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence:</td>
<td>E</td>
</tr>
<tr>
<td>Coordinator:</td>
<td>Pietro Roversi</td>
</tr>
<tr>
<td>Mark Scheme:</td>
<td>UG Module Mark Scheme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Exam - Organic Chemistry (Final)</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Exam - Inorganic Chemistry</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Coursework - Organic Chemistry</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Coursework - Inorganic Chemistry</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Coursework - Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td></td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>8</td>
</tr>
<tr>
<td>Synchronous Other</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Lectures/Presentations</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Other</td>
<td></td>
</tr>
<tr>
<td>Guided Independent Study</td>
<td>216</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

"On successful completion of the module, students should be able to:~ Discuss the structure and reactivity of amino acids and the application of this chemistry for the synthesis and structure determination of peptides. ~ Represent important conformations of alicyclic systems (especially 6-membered); predict and rationalise their relative stability and their influence on the stereoelectronic requirements of reaction pathways. ~ Interpret and discuss the differences between a variety of reaction mechanisms including nucleophilic substitution, elimination reactions, reactions of alkenes, reactions of carbonyls and electrophilic aromatic substitution. ~ Discuss and explain the electronic structure of aromatic carbocycles and heterocycles and its effect upon reactivity; use this information to propose effective reaction sequences to synthesise and interconvert aromatic species. ~ Rationalise and predict reactivity based on curly arrow mechanisms and diagrams; explain how structure and bonding controls the outcome and selectivity of organic reactions. ~ State the methods of preparation, and describe the bonding, relative stability and reactivity of metal-carbonyls, -alkyls, -carbenes, -hydrides; as well as alkenes, diene, allyl, cyclopentadienyl and benzene complexes. ~ Be able to use spectroscopic (IR, NMR and Mass Spectrometry) microanalytical data and structural methods in the characterisation of organometallic species. ~ Apply the concepts of chemical kinetics to inorganic chemistry including making connections between the kinetics of a process and the mechanism of a reaction. ~ Appreciate the importance of inorganic chemistry in catalysis and describe the mechanistic steps in a number of industrially important catalytic cycles. ~ Apply a range of synthetic approaches in contexts relevant to biology (e.g. drug synthesis) and material science (e.g. the role of transition metal catalysts in the synthesis valuable commodities)."

Teaching and Learning Methods

- Research-based learning
- Lectures
- Example problems
- Tutorials
- Marked work
- Group problem solving classes
- VLE directed activities

Assessment Methods

Pre-Requisites

"NT2008, NT2009"

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

~ Preparation for tutorials (including reading, videos)~ Directed reading~ Set problems~ Group problem solving exercises~ Formative quizzes"

Last Published: 8 November 2021
Module Specification

NT3010 Electromagnetic Fields and Relativity, Quantum Physics and Particles

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 30

Period: Semester 1
Occurence: E
Coordinator: Cheryl Hurkett
Mark Scheme: UG Module Mark Scheme

Intended Learning Outcomes

"On successful completion of the module, students should be able to:~ Solve problems involving the electric field and electric displacement, the magnetic field and magnetic intensity, polarisation and magnetisation.~ State mathematically the integral and differential forms of Maxwell’s equations.~ Use Maxwell’s equations to derive the wave equation for electromagnetic (EM) waves, to solve basic problems in electromagnetism.~ Solve problems involving calculations of electromagnetic energy density and electromagnetic energy propagation.~ Define and derive the boundary conditions for EM waves, and solve problems involving waves at boundaries under a number of geometries.~ State the concepts developed in Einstein's theory of Special Relativity, and apply basic formulae, including the Lorentz transforms, to predict behaviour in physical situations where velocities are high; use the energy-momentum relationship to solve problems involving the collision of relativistic particles; explain the principles underlying the General Theory of Relativity.~ Describe the wave-like properties of matter at the quantum level; state the time dependent and time-independent Schrödinger equations; be able to solve simple 1-dimensional problems involving infinite and finite wells and barriers, including the calculation of expectation values and probability densities; use the De Broglie relations and Uncertainty principle to estimate physical properties in quantum systems.~ Demonstrate knowledge of the basis concepts of the Standard Model of particle physics, including stating the properties of elementary particles such as leptons and quarks; use the conservation laws to deduce whether a decay or reaction is allowed; be able to explain how quarks combine to form hadrons and mesons; be able to state the properties and use appropriate mathematical descriptions of Fermions and Bosons.~ Apply scientific knowledge from 'Electromagnetic Fields' and 'Relativity, Quantum Physics and Particles' to provide unique insight, or deeper analysis, of an interdisciplinary topic related to these concepts. For example construct mathematical models to demonstrate how electrical field theory or quantum mechanics can be applied to a range of systems in nature.~ Conduct independent research of the literature in order to support such models/discussions.~ Organise appropriate private study time, obtain supplementary information from text books to consolidate your understanding, and communicate the physical principles underlying Maxwell's equations and electromagnetic waves to your peers and to staff."

Teaching and Learning Methods

"In this course you will benefit from lectures, real-time problem solving classes, assessed homework problems, discussions with peers and staff members, and guided independent study."

Assessment Methods

Pre-Requisites

Last Published: 8 November 2021
You will work through the course text, including working through the example problems, and practice problems. You will discuss problems and solutions with your peers, and review other texts on the subject to find alternative strategies to problem solving and alternative descriptions of the material. As part of the revision you should work through the past papers provided on blackboard and make reference to your course handouts and the numerical answers provided to ensure you have mastered the subject.
Module Specification

NT3011 Condensed Matter and Statistical Physics

Academic Year: 2021/2

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass't Group</th>
<th>Alt Reass't</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework Condensed Matter</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Coursework Statistical Physics</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Coursework Interdisciplinary</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Exam Condensed Matter (Final)</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Exam Statistical Physics (Final)</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period: Semester 2

| Occurrence: | E |

Coordinator: Cheryl Hurkett

Mark Scheme: UG Module Mark Scheme

Student Workload (hours)

<table>
<thead>
<tr>
<th>Synchronous Lectures</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Small Group Teaching</td>
<td>6</td>
</tr>
<tr>
<td>Synchronous Practical Classes/Workshops/Professional Placements</td>
<td>20</td>
</tr>
<tr>
<td>Synchronous Other Ass'nt Lectures/Presentations</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Other Guided Independent Study</td>
<td>226</td>
</tr>
<tr>
<td>Total Module Hours</td>
<td>300</td>
</tr>
</tbody>
</table>

Intended Learning Outcomes

"On successful completion of the module, students should be able to:~ Sketch simple crystal structures adopted by solid materials; perform simple calculations relating to crystal structures.~ Describe simple models for lattice vibrations.~ State and apply the laws governing the behaviour of electrons in various condensed matter environments including metals, insulators, semiconductors and superconductors relations.~ Derive the three distribution functions appropriate to fermions, bosons and classical particles; use the partition function to obtain the properties of simple systems.~ Describe mathematically and solve problems involving electrons in the free electron gas.~ Solve simple problems involving the magnetic properties of matter.~ Connect scientific knowledge from 'Condensed Matter' and 'Statistical Physics' to provide unique insight, or deeper analysis, of an interdisciplinary topic related to these concepts. For example construct and apply mathematical models employing condensed matter approaches and statistical approaches to biochemical scenarios.~ Carry out independent research of the literature in order to support such models/discussions.~ Organise appropriate private study time; obtain new information from text books; apply mathematical techniques to solving problems in statistical physics; be able to discuss basic physics and communicate mathematical ideas with your peers and staff; be able to set out solutions to problems clearly and correctly."

Teaching and Learning Methods

"In this course you will benefit from lectures, small group tutorial classes, workshops, discussions with peers and staff members, and guided independent study."

Assessment Methods

Pre-Requisites

Co-Requisites

Excluded Combinations

Last Published: 8 November 2021
Guided Independent Study: Indicative Activities

“You will work through the course, including working through the example problems, and practice problems. You will discuss problems and solutions with your peers, and review other texts on the subject to find alternative strategies to problem solving and alternative descriptions of the material.”
NT3201 Independent Project III

Academic Year: 2021/2
Module Level: Year 3
Scheme: UG
Department: Biological Sciences
Credits: 15

Period: Semester 2
Occurrence: E
Coordinator: Pietro Roversi
Mark Scheme: UG Module Mark Scheme

Student Workload (hours)
- Synchronous Lectures
- Synchronous Small Group Teaching
- Synchronous Practical Classes/Workshops/Professional Placements
- Asynchronous Lectures/Presentations
- Asynchronous Other
- Guided Independent Study
Total Module Hours 150

Table:

<table>
<thead>
<tr>
<th>No.</th>
<th>Assessment Description</th>
<th>Weight %</th>
<th>Qual Mark</th>
<th>Exam Hours</th>
<th>Ass’t Group</th>
<th>Alt Reass’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coursework</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Dissertation (Final)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intended Learning Outcomes
"On successful completion of the module, students should be able to:~- Demonstrate independent research/study skills including: locate relevant (additional) research materials, time management, maintain a record of written sources, organise regular meetings with your supervisor, obtain a greater depth of knowledge in a discipline specialism.~- Critically analyse a variety of written sources.~- Prepare and deliver a lecture that focuses on an aspect of your research.~- Demonstrate core presentation skills.~- Construct a report that synthesises information from a variety of sources."

Teaching and Learning Methods
- Guided independent research
- Review report
- Presentation

Assessment Methods

Pre-Requisites

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities
Directed reading