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Misconceptions about misconcep-
tions in mathematics.
We all know that younger pupils learning
mathematics may tend to adopt incorrect
algorithms. For example, a pupil may add
the fractions 2

3 + 1
4 by saying the result is

2+1
3+4 = 3

7 .
However it can also happen that misconcep-
tions appear also in secondary mathematics
textbooks. The first example in the image
opposite is taken from a secondary school
text. And it is incorrect mathematics for the

simple reason that the √ symbol refers to the positive square root of a positive real number.
So
√
144 = +12. This misconception possibly arises by thinking that √ comes from inverting

the equality (±a)2 = a2. Anecdotal evidence suggests that this misconception, that
√
a2 = ±a,

persists in the minds of a substantial proportion of older learners.
In another case adult learners were asked if the algorithm in the second part of the image,
namely that a

b ÷
c
d = a÷c

b÷d , was true or false. The majority of respondents, possibly remember-
ing that a

b +
c
d 6=

a+c
b+d , stated that it was false. It is, in fact, a correct algorithm but not adopted

in the arithmetic for the simple reason that it does not always give the answer as conventional
rational numbers. For example 4

9 ÷
2
3 = 4÷2

9÷3 = 2
3 is ok. But 4

9 ÷
3
4 = 4÷3

9÷4 gives 1.33..
2.25 , which is

correct but awkward because it is not a conventional fraction. We would rather have 16
27 .

A rational explanation why
there are irrational numbers.

The rational numbers are just the
integers and fractions. The former
have physical representation when
counting objects. The latter can be
represented when we divide or share
an integer n by another integer m.

The rational numbers have specific
types of decimal representation. They
have either terminating or recurring
decimal representations.

An integer n can be represented as
just n.0, for example 7 = 7.0.

Fractions have either terminating
or recurring decimal representations.
For example 2

5 = 0.4 and 2
3 = 0.6.

To prove that fractions have either
terminating or recurring decimal rep-
resentations we first state that frac-

tions are either of the form A
2m5n ,

where m and n are positive integers,
or of the form A

B , where B is not of
the form 2m5n.

In the former case A
2m5n = A×5m−n

10m

or A
2m5n = A×2n−m

10n , depending on
which of m or n is larger: in both
cases it is easy to see that we have a
terminating decimal.

In the latter case where we have
fractions of the type A

B , where B is
not of the form 2m5n, let us assume
that B > A. When we divide A by B
there are at most B − 1 remainders,
and these remainders will repeat at
some point. As a concrete example
when we divide 3 by 7 the possi-
ble remainders in the long division
are 1, 2, 3, 4, 5 or 6 (it cannot be 0
because then the fraction would be
terminating and so B would be of

the form 2m5n). So at some point in
the long division process a remain-
der must recur. In fact the 6 unique
remainders when we divide 3 by 7
are 2,6,4,5,1,3 with respective quo-
tients 4,2,8,5,7,1 and this pattern is
repeated. So 3

7 has a decimal rep-
resentation with 6 recurring digits:
0.428571. Sometimes the recurring
digits occur later than the first place;
for example 5

12 = 0.426. And using
secondary school algebra we can also
find the fraction equal to any number
whose decimal representation has re-
curring decimal places.

So a number with a decimal rep-
resentation that is neither ter-
minating or recurring, such as
0.1010010001000001......, is not ra-
tional. These are the irrational num-
bers, but unlike rational numbers a
physical analogy for them is not easy.
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Surprising results from sums
of sequences of natural num-
bers.
We first need to note that the
sum of an arithmetic sequence
a, a+d, a+2d, ...., a+(n−1)d is well
known. It is Sn = 1

2n(2a+ (n− 1)d).

Now consider the sequence of nat-
ural numbers 1, 2, 3, 4, ...., n, ... . If we
sum cumulatively from the left we
get the sequence:

1, 3, 6, 10, ......

which appear to be the familiar trian-
gle numbers. To prove that this is al-
ways the case we note that the first n
natural numbers form an arithmetic
sequence with a = d = 1 so its sum
is: Sn = 1

2n(2+ (n− 1)) = 1
2n(n+1).

And this is the formula for triangle
numbers.

Next we form the sequence of the
natural numbers with the even num-
bered terms removed:

1, 3, 5, 7, ....., (2n− 1), ....

And then sum cumulatively from the
left to get:

1, 4, 9, 16, .....

To be sure we always get square
numbers we need to sum the nth cu-
mulative sum. Here a = 1 and d = 2,
so the sum is

Sn = 1
2n(2 + (n− 1)2) = n2.

So the cumulative sums are indeed
always square numbers.

Now we form the sequence first n
natural numbers with multiples of
3 removed, find cumulative sums,
remove even numbered terms, and
then cumulatively sum from the left.
The procedure in steps is:

1, 2, 4, 5, 7, 8, ......., (3n+1), (3n+2), ...

The cumulative sums are:

1, 3, 7, 12, 19, 27, .........

Removing even numbered terms
gives:

1, 7, 19, .........

Finally summing cumulatively from
the left gives:

1, 8, 27, .........

The sums appear to be cubed num-
bers. Since mathematics is about
making sure we will prove this by
using the arithmetic series sum for-
mula and the formula for the sum
SQ of the first n squares, namely,

SQ = 1
6n(n+ 1)(2n+ 1).....(∗)

We first go back to the finite sequence

1, 2, 4, 5, 7, 8, ......., (3n+ 1), (3n+ 2)

And find the cumulative sequence S
up to (3n + 2). The cumulative sum
is the sum of the natural numbers
from 1 to (3n + 2) less the positive
multiples of 3 up to 3n. So

S = 1
2 (3n+2)(3n+3)−3× 1

2n(n+1).

Or S = 3
2 (n+ 1)(3n+ 2− n).

Or S = 3
2 (n+ 1)(2n+ 2).

That is, S = 3(n+ 1)2.

Thus the generalised cumulative
sums after the multiples of 3 are
removed is

1, 3, 7, 12, 19, 27, ......................
...., 3(n+ 1)2 − (3n+ 2), 3(n+ 1)2, ...

The even numbered terms are 3 times
square numbers are removed to form
the next sequence. The terms that
are left are seen to have the general
form:

3(n+ 1)2 − (3n+ 2)

So the final sequence to be cumula-
tively summed is easily seen to be:

(3× 12 − 3× 0 + 2) = 1,
(3× 22 − 3× 1 + 2) = 7,
(3× 32 − 3× 2 + 2) = 19,
.
.
3(n+ 1)2 − (3n+ 2),
.
.

We will find the sum T up to the
(n + 1)st term 3(n + 1)2 − (3n + 2)
shown above.

We can see that T comprises of 3
times the sum of the first (n + 1)
square numbers minus 3 times the
sum of the first n natural numbers
minus 2(n+ 1).

Using the arithmetic series formula
and formula (*) we get:

T = 3× 1
6 (n+ 1)(n+ 2)(2n+ 3)

− 3× 1
2n(n+ 1)− 2(n+ 1).

Factoring out 1
2 (n+ 1) we then get

T = 1
2 (n+1) ((n+ 2)(2n+ 3)− 3n− 4).

Or

T = 1
2 (n+1)

(
2n2 + 7n+ 6− 3n− 4

)
.

Or

T = 1
2 (n+ 1)

(
2n2 + 4n+ 2

)
.

Or

T = (n+ 1)
(
n2 + 2n+ 1

)
.

Hence T = (n + 1)3. And this proves
that the final cumulative sums are
indeed cubed numbers.

The arguments thus far are confir-
mation of the first two conjectures
made about Moessner sequences in
newsletter 1.

To generate fourth powers using the
Moessner procedure one has to:

1. Remove every 4th number from
the sequence of natural numbers.
2. Do cumulative addition.
3. Remove every 3rd number.
4. Do cumulative addition.
5. Remove every 2nd number.
6. Do cumulative addition to obtain
fourth powers.

The reader is encouraged to prove
the fourth power conjecture by ex-
tending the argument.
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