

Document Control					
Rev	Date	Ву	Comments		
А	Jun'16	L. Davies	Technical review update		
В	Oct'17	L. Davies	Technical review update		
С	Dec 17	UoL	Sign off for release		
D	July 2020	UoL	Minor Updates		

Design Guidance

- 1. The technical feasibility of installing each renewable technology must be made on a case by case basis considering the energy demand profile of the building in question and the requirements of the Low Energy Design principles outlined within GD01. Particular attention must be given to the carbon content of each of the technologies. A summary of the pros and cons associated with each system is tabulated below as a guide to discount any unsuitable options at an early stage.
- 2. At each stage of the development process a detailed full life cycle operational performance evaluation shall be undertaken in line with CIBSE TM54 including a detailed costed analysis outlining payback projections including all elements of capital and operational system costs which themselves include energy, carbon and maintenance costs. Capital costs should include life cycle refresh costs.
- 3. To take advantage of any current Government backed tariffs and initiatives/payments, the design, system installer and chosen equipment must be in accordance with any necessary requirements and/or any approved Micro-Generation Certification Scheme (MCS) list. Details of which can be found at http://www.microgenerationcertification.org/. In addition, OFGEM approved metering must be installed to monitor system performance.
- 4. The design shall always include aa LZC appraisal assessment being specific to each project and it is imperative that the LZC assessor considers the following key criteria in their overall feasibility appraisal:
 - The LZC study as a minimum must be structured to get the credits available for the "feasibility study" under BREEAM ENEO4 Low Carbon Design.
 - CDM implications associated with the ongoing maintenance of the systems proposed will need to be considered in relation to costs and practicability.
 - Whole life cycle costing appraisal to be conducted to accurately assess the system's lifecycle cost inclusive of all ongoing maintenance, energy, carbon and system replacement costs. All life cycle costing assessments must include access, installation and disposal costs where appropriate.
 - Funding streams and incentive schemes must be considered as available at the time of concept planning to accurately inform the potential benefits of system proposals to understand where incentivised schemes may prove beneficial to the capital and operational budgets throughout the lifecycle of each system considered.
 - For all benchmark costing exercises undertaken it is essential that accurate load profile and demand calculations provide accurate energy and CO₂ assessments to offer realistic proposals.
 - 5. For the purpose of renewable technology appraisals, the University acknowledge that the district heating scheme may not be useful in reducing carbon consumption. The University consider this may be a less clean energy source than those contained within this guide and shall not be considered in relation to the renewable energy strategy outlined in GD01 'Low energy design' and GD03 'Sustainable Design & Planning'.

UOL Accepted Renewable Technologies

Technology	Brief Description	Benefits	Issues/Limitations
Solar Photovoltaic	Solar photovoltaic panels convert solar radiation into electrical	Low maintenance/no moving parts	Any overshadowing reduces pane performance
Filotovoitaic	energy through semiconductor	Easily integrated into building	
	cells. They are not to be confused	design	Panels ideally inclined at 30° to
	with solar panels which use the		the horizontal facing a southerly
	sun's energy to heat water (or air)	Excellent learning resource	direction
	for water and space heating.		
		Potential grid export	
Solar Thermal	Solar thermal energy can be used to contribute towards space	Low maintenance	Must be sized for the building hot water requirements
	heating and hot water	Little/no ongoing costs	
	requirements. The two		Panels ideally inclined at 30° to
	commonest forms of collector are	Excellent learning resource	the horizontal facing a southerly
	panel and evacuated tube.		direction
		Income generated from Renewable	
		Heat Incentive (RHI) scheme	Twin coil solar hot water cylinders
			shall be used with the solar
			element serving the bottom coil
			Possible legionellae.
Hybrid	Hybrid Photovoltaic-Thermal (PV-	Low maintenance	Any overshadowing reduces pane
Phovoltaic-	T) solar collectors produce both		performance
Thermal (PV-T)	electricity and thermal energy	Little/no ongoing costs	
	simultaneously from solar		Must be sized for the building hot
Solar	radiation. A PV-T collector is a	Increased electrical yield	water or air heating requirements
Collectors	combined assembly of a PV	Deduced installation for staring	Denela ideally inclined at 200 to
	module for the conversion of electrical energy and a high	Reduced installation footprint	Panels ideally inclined at 30 ^o to the horizontal facing a southerly
	efficiency flat plate solar collector	Excellent learning resource	direction
	for the conversion of thermal	Excellent learning resource	unection
	energy.		Possible legionellae.
		Income generated from Renewable	
		Heat Incentive (RHI) scheme	
Ground Source	GSHP systems tap into the earth's	Use of low/zero grid electricity with	Large area required for horizontal
Heat Pump	considerable energy store to	high COP equipment.	pipes
-	provide both heating and cooling		
(GSHP)	to buildings. A number of	Minimal maintenance	Full ground survey required to
	installation methods are possible		determine geology
	including horizontal trench, vertical	Unobtrusive technology	
	boreholes, piled foundations		More beneficial to the
	(energy piles) or plates/pipe work	Flexible installation options to meet available site footprint	development if cooling is required
	submerged in a large body of water. The design, installation and		Integration with piled foundations
	operation of GSHPs is well	Income generated from Renewable	must be done at an early stage
	established.	Heat Incentive (RHI) scheme	must be done at an early stage
			Only the heating cycle considered
			as a renewable technology and
			reverse cycling for cooling shall
			not be considered as an LZC

2 of 6

UNIVERSITY OF LEICESTER

			benefit
Open Loop	Open loop water source cooling	Use of low/zero grid electricity with	Environmental impact on water
Water Source	systems pump water from a lake,	high COP equipment.	resources to be assessed
Cooling	river or canal through a coarse		
coomb	filter and simple heat exchanger	Relatively low capital costs	Abstraction licence required from
	that feeds a water-cooled chiller.		the Environment Agency
	Warm water is discharged to surface waters and never mixes	Minimal maintenance	Discharge consent to be sort for
	with other fluids within the	Potential high Coefficient of	disposal of water to surface
	building, thereby eliminating the	Performance (COP)	waters
	risks of Legionella.		
			Limits imposed on the water
			discharge temperature
Open Loop	Ground water cooling exploits the	Use of low/zero grid electricity with	Environmental impact on water
Ground Water	relatively constant ground	high COP equipment.	resources to be assessed
Cooling	temperature to provide	Beleficial de la tradición	
0	summertime cooling through	Relatively low capital costs	Abstraction licence required from
	water-to-ground heat exchangers (aquifers). An aquifer is essentially	Minimal maintenance	the Environment Agency
	a layer of water-bearing rock which		Discharge consent to be sort for
	readily transmits water to wells	Potential high Coefficient of	disposal of water to surface
	and springs. Open loop systems	Performance (COP)	waters
	pump ground water to the surface,	. ,	
	where it passes through a heat		Limits imposed on the water
	transfer system, before being		discharge temperature
	disposed of (at a different		
	temperature) to waste or by re-		
	injection back into the ground.		
Outside	Electric or gas driven air source	Use of low/zero grid electricity with	Specialist maintenance
Ambient Air,	heat pumps extract thermal energy	high COP equipment.	
Air Source	from the surrounding air and	Efficient use of fuel	More beneficial to the
Heat Pump.	transfer it to the working fluid (air or water).	Efficient use of fuel	development if cooling is required
neat ramp.	or water).	Relatively low capital costs	Requires defrost cycle in extreme
		heldivery low capital costs	conditions
Exhaust Air,		Income generated from Renewable	
Air Source		Heat Incentive (RHI) Scheme	Some additional plant space
Heat Pump.			required
		Better COP (than ambient air) with	
		exhaust air in winter but must not	Only the heating cycle considered
		negate the use of simple AHU heat	as a renewable technology and
		recovery devices.	reverse cycling for cooling shall
			not be considered as an LZC
			benefit
Solar Assisted	Combination of solar thermal and	Combinations of the above	May not need heat on good days
Air Source	water source heat pump.	technologies.	for solar.
Heat Pump			Needs large thermal store. May be better use of solar
•			thermal for domestic hot water.
Wind Turbine	Wind generation equipment	Low maintenance/ongoing costs	Planning issues
	operates on the basis of wind		
(Stand-alone	turning a propeller, which is used	Minimum wind speed available	Aesthetic impact and background
column	to drive an alternator to generate	(www.bwea.com)	noise
mounted)	electricity. Small scale (1kW –		
	15kW) wind turbines can be pole	Excess electricity can be exported to	Space limitations on site

3 of 6

LZC & Renewable Technologies

	as read manufad	للم من ما	[
	or roof mounted.	the grid Excellent learning resource	Wind survey to be undertaken to verify 'local' viability
		Income generated from Feed-in	
		Tariff (FIT)	
Wind Turbine (Roof	As above	Low maintenance/ongoing costs	Planning issues
(Nooj Mounted)		Minimum wind speed available (www.bwea.com)	Aesthetic impact and background noise
		Excess electricity can be exported to the grid	Structural/vibration impact on building to be assessed
		Excellent learning resource	Proximity of other buildings raises issues with downstream
		Income generated from Feed-in Tariff (FIT)	turbulence
			Wind survey to be undertaken to verify 'local' viability
Gas Fired Combined	A Combined Heat and Power (CHP) installation is effectively a mini on- site power plant providing both	Potential high energy saving available with efficient use of fuel	Not good at reducing carbon as mains gas supply is high carbon content.
Heat and Power (stand	electrical power and useful heat. CHP is strictly an energy efficiency	Excess electricity can be exported to the grid	Maintenance intensive
alone)	measure rather than a renewable energy technology.	Excellent learning resource	Sufficient base thermal and electrical demand required
		Benefits from being part of an energy centre/district heating	Some additional plant space
		scheme	required
Bio-fuel Fired Combined	As above.	Potential high CO ₂ saving available with use of biofuels.	Maintenance intensive
			Sufficient base thermal and
Heat and Power (stand		Efficient use of fuel and high energy savings	electrical demand required
alone)			Significant plant space required
-		Excess electricity can be exported	
		back to the grid	Biomass fuelled systems are at preliminary stages of
		Excellent learning resource	commercialisation
		Benefits from being part of an energy centre/district heating	Large area needed for fuel delivery and storage
		scheme	Reliable biomass fuel supply chain
		Income generated from Renewable Obligation Certificates (ROCs) and	required
		Renewable Heat Incentive (RHI) scheme	
Anaerobic	Anaerobic digestion consists of a	Potential high CO ₂ saving available	Maintenance intensive
Digestion	series of biological processes in which micro-organisms break	when teamed with a CHP engine	Significant plant space required
	down biodegradable material in the absence of oxygen releasing a	Biogas produced from waste	Large area needed for waste

4 of 6

LZC & Renewable Technologies

	methane (CH ₄) and carbon dioxide	By-product (digestate) used as	delivery and storage
	(CO ₂) rich biogas (60% CH ₄ and 40%	fertiliser	
	CO ₂) suitable for energy		Reliable waste stream required
	production; particularly via CHP.	Income generated from Feed-in	
		Tariff (FIT)	
Bio-Renewable	Modern wood-fuel boilers are	Stable long term running costs	Large area needed for fuel
Energy Sources	highly efficient, clean and almost		delivery and storage
(Automated	carbon neutral (the tree growing	Potential good CO ₂ saving	
	process effectively absorbs the CO ₂		Reliable fuel supply chain required
feed – wood-	that is emitted during combustion).	Excellent learning resource	
fuel boiler	Automated systems require		Regular maintenance required
plant)	mechanical fuel handling and a	Income generated from Renewable	
	large storage silo.	Heat Incentive (RHI) scheme	Significant plant space required
Water Turbine	Hydroelectric power comes from	Low maintenance/ongoing costs	Minimum head of water required
(Hydroelectric)	the potential energy of a flowing	Deliable constant electricity	Detential appleatical impact to be
	body of water driving a water turbine and generator. Micro-	Reliable constant electricity	Potential ecological impact to be assessed
	hydro power systems typically	generation	assessed
	range from 1kW to 100kW.	Excess electricity can be exported	Abstraction license required
	Tange from IKW to 100KW.	back to the grid	Abstraction license required
		buck to the grid	
		Income generated from Feed-in	
		Tariff (FIT)	
Fuel Cells and	Fuel cells convert the energy of a	Zero CO ₂ emissions if fired on pure	Expensive
	controlled chemical reaction,	hydrogen and low CO ₂ emissions if	P
Fuel Cell	typically involving hydrogen and	fired on other hydrocarbon fuels	Pure hydrogen fuel supply and
Combined	oxygen, into electricity, heat and		distribution infrastructure limited
Heat and	water vapour. Fuel cell stacks	Virtually silent operation since no	in the UK
Power	operate in the temperature range	moving parts	
	65°C – 800°C providing co-		Sufficient base thermal and
	generation opportunities in the	High electrical efficiency	electrical demand required
	form of Combined Heat and Power		
	(CHP) solutions.	Excess electricity can be exported	Some additional plant space
		back to the grid	required
		Excellent learning resource	Reforming process, used to
			extract hydrogen from alternative
		Benefits from being part of an	fuels, requires energy; lowering
		energy centre/district heating	overall system efficiency
		scheme	
LDEC Existing	District Heating, also known as	CO ₂ savings are marginal and in	Dependent on distribution
District	community heating, provides heat	some circumstances are negative.	network and capacity
Heating	from a central source to more than	Dessible assisted as dessesses in	
	one building/ area via a network of	Possible capital and space savings	Commitment to single fuel
	heat mains		provider
			Consider fuel resilience (in case of
			,
			main plant failure)

5 of 6

6 of 6